HOME

TheInfoList



OR:

Histone-lysine N-methyltransferase 2D (KMT2D), also known as MLL4 and sometimes MLL2 in humans and Mll4 in mice, is a major mammalian
histone H3 Histone H3 is one of the five main histones involved in the structure of chromatin in eukaryotic cells. Featuring a main globular domain and a long N-terminal tail, H3 is involved with the structure of the nucleosomes of the 'beads on a stri ...
lysine 4 (H3K4) mono-
methyltransferase Methyltransferases are a large group of enzymes that all methylate their substrates but can be split into several subclasses based on their structural features. The most common class of methyltransferases is class I, all of which contain a Rossm ...
. It is part of a family of six Set1-like H3K4 methyltransferases that also contains
KMT2A Histone-lysine ''N''-methyltransferase 2A also known as acute lymphoblastic leukemia 1 (ALL-1), myeloid/lymphoid or mixed-lineage leukemia 1 (MLL1), or zinc finger protein HRX (HRX) is an enzyme that in humans is encoded by the ''KMT2A'' gene. ML ...
(or MLL1), KMT2B (or MLL2), KMT2C (or MLL3), KMT2F (or SET1A), and KMT2G (or SET1B). KMT2D is a large
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
over 5,500
amino acids Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
in size and is widely expressed in adult tissues. The protein co-localizes with lineage determining
transcription factors In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence. The func ...
on transcriptional enhancers and is essential for
cell differentiation Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellula ...
and embryonic development. It also plays critical roles in regulating
cell fate Within the field of developmental biology, one goal is to understand how a particular cell develops into a final cell type, known as fate determination. Within an embryo, several processes play out at the cellular and tissue level to create an organ ...
transition, metabolism, and tumor suppression. Mutations in KMT2D cause human genetic conditions including
Kabuki syndrome Kabuki syndrome (also previously known as Kabuki-makeup syndrome (KMS) or Niikawa–Kuroki syndrome) is a congenital disorder of genetic origin. It affects multiple parts of the body, with varying symptoms and severity, although the most common is ...
, another distinct congenital malformations disorder and various forms of cancer.


Structure


Gene

In mice, KMT2D is coded by the ''Kmt2d'' gene located on chromosome 15F1. Its transcript is 19,823 base pairs long and contains 55 exons and 54 introns. In humans, KMT2D is coded by the ''KMT2D'' gene located on chromosome 12q13.12. It's transcript is 19,419 base pairs long and contains 54 exons and 53 introns.


Protein

KMT2D is homologous to Trithorax-related (Trr), which is a
Trithorax-group protein Trithorax-group proteins (TrxG) are a heterogeneous collection of proteins whose main action is to maintain gene expression. They can be categorized into three general classes based on molecular function: # histone-modifying TrxG proteins # chroma ...
. The mouse and human KMT2D proteins are 5,588 and 5,537 amino acids in length, respectively. Both species of the protein weigh about 600 kDa. KMT2D contains an enzymatically active C-terminal SET domain that is responsible for its methyltransferase activity and maintaining protein stability in cells. Near the SET domain are a plant homeotic domain (PHD) and FY-rich N/C-terminal (FYRN and FYRC) domains. The protein also contains six N-terminal PHDs, a high mobility group (HMG-I), and nine nuclear receptor interacting motifs (LXXLLs). It was shown that amino acids Y5426 and Y5512 are critical for the enzymatic activity of human KMT2D ''in vitro''. In addition, mutation of Y5477 in mouse KMT2D, which corresponds to Y5426 in human KMT2D, resulted in the inactivation of KMT2D's enzymatic activity in embryonic stem cells. Depletion of cellular H3K4 methylation reduces KMT2D levels, indicating that the protein's stability could be regulated by cellular H3K4 methylation.


Protein complex

Several components of the KMT2D complex were first purified in 2003, and then the entire complex was identified in 2007. Along with KMT2D, the complex also contains ASH2L, RbBP5, WDR5, DPY30, NCOA6, UTX (also known as KDM6A), PA1, and PTIP. WDR5, RbBP5, ASH2L, and DPY30 form the four-subunit sub-complex WRAD, which is critical for H3K4 methyltransferase activity in all mammalian Set1-like histone methyltransferase complexes. WDR5 binds directly with FYRN/FYRC domains of C-terminal SET domain-containing fragments of human KMT2C and KMT2D. UTX, the complex’s H3K27 demethylase, PTIP, and PA1 are subunits that are unique to KMT2C and KMT2D. KMT2D acts as a scaffold protein within the complex; absence of KMT2D results in destabilization of UTX and collapse of the complex in cells.


Enhancer regulation

KMT2D is a major enhancer mono-methyltransferase and has partial functional redundancy with KMT2C. The protein selectively binds enhancer regions based on type of cell and stage of differentiation. During differentiation, lineage determining transcription factors recruit KMT2D to establish cell-type specific enhancers. For example, CCAAT/enhancer-binding protein β (C/EBPβ), an early adipogenic transcription factor, recruits and requires KMT2D to establish a subset of adipogenic enhancers during adipogenesis. Depletion of KMT2D prior to differentiation prevents the accumulation of H3K4 mono-methylation (
H3K4me1 H3K4me1 is an epigenetic modification to the DNA packaging protein Histone H3. It is a mark that indicates the mono-methylation at the 4th lysine residue of the histone H3 protein and often associated with gene enhancers. Nomenclature H3K4me1 i ...
), H3K27 acetylation, the transcriptional coactivator Mediator, and RNA polymerase II on enhancers, resulting in severe defects in gene expression and cell differentiation. KMT2C and KMT2D also identify super-enhancers and are required for formation of super-enhancers during cell differentiation. Mechanistically, KMT2C and KMT2D are required for the binding of H3K27 acetyltransferases CREB-binding protein (CBP) and/or p300 on enhancers, enhancer activation, and enhancer-promotor looping prior to gene transcription. The KMT2C and KMT2D proteins, rather than the KMT2C and KMT2D-mediated H3K4me1, control p300 recruitment to enhancers, enhancer activation, and transcription from promoters in embryonic stem cells.


Functions


Development

Whole-body knockout of ''Kmt2d'' in mice results in early embryonic lethality. Targeted knockout of ''Kmt2d'' in precursors cells of brown adipocytes and myocytes results in decreases in brown adipose tissue and muscle mass in mice, indicating that KMT2D is required for adipose and muscle tissue development. In the hearts of mice, a single copy of the ''Kmt2d'' gene is sufficient for normal heart development. Complete loss of ''Kmt2d'' in cardiac precursors and myocardium leads to severe cardiac defects and early embryonic lethality. KMT2D mediated mono- and di-methylation is required for maintaining necessary gene expression programs during heart development. Knockout studies in mice also show that KMT2D is required for proper B-cell development.


Cell fate transition

KMT2D is partially functionally redundant with KMT2C and is required for cell differentiation in culture. KMT2D regulates the induction of adipogenic and myogenic genes and is required for cell-type specific gene expression during differentiation. KMT2C and KMT2D are essential for adipogenesis and myogenesis. Similar functions are seen in neuronal and osteoblast differentiation. KMT2D facilitates cell fate transition by priming enhancers (through H3K4me1) for p300-mediated activation. For p300 to bind the enhancer, the physical presence of KMT2D, and not just the KMT2D-mediated H3K4me1, is required. However, KMT2D is dispensable for maintaining embryonic stem cell and somatic cell identity.


Metabolism

KMT2D is partially functionally redundant with KMT2C in the liver as well. Heterozygous ''Kmt2d+/-'' mice exhibit enhanced glucose tolerance and insulin sensitivity and increased serum bile acid. KMT2C and KMT2D are significant epigenetic regulators of the hepatic circadian clock and are co-activators of the circadian transcription factors retinoid-related orphan receptor (ROR)-''α'' and -''γ''. In mice, KMT2D also acts as a coactivator of PPARγ within the liver to direct over-nutrition induced steatosis. Heterozygous ''Kmt2d+/-'' mice exhibit resistance to over-nutrition induced hepatic steatosis.


Tumor suppression

KMT2C and KMT2D along with NCOA6 act as coactivators of p53, a well-established tumor suppressor and transcription factor, and are necessary for endogenous expression of p53 in response to doxorubicin, a DNA damaging agent. KMT2C and KMT2D have also been implicated with tumor suppressor roles in acute myeloid leukemia, follicular lymphoma, and diffuse large B cell lymphoma. Knockout of ''Kmt2d'' in mice negatively affects the expression of tumor suppressor genes ''TNFAIP3'', ''SOCS3'', and ''TNFRSF14''. Conversely, KMT2D deficiency in several breast and colon cancer cell lines leads to reduced proliferation. Increased KMT2D was shown to facilitate chromatin opening and recruitment of transcription factors, including estrogen receptor (ER), in ER-positive breast cancer cells. Thus, KMT2D may have diverse effects on tumor suppression in different cell types.


Clinical significance

Germline heterozygous loss of function mutations in ''KMT2D'', also known as ''MLL2'' in humans, cause
Kabuki syndrome Kabuki syndrome (also previously known as Kabuki-makeup syndrome (KMS) or Niikawa–Kuroki syndrome) is a congenital disorder of genetic origin. It affects multiple parts of the body, with varying symptoms and severity, although the most common is ...
type 1 with mutational occurrence rates between 56% and 75%. Mosaic mutations and intragenic deletions and duplicaitons have also been described in this condition. Type 1 Kabuki syndrome is characterised by developmental delay, intellectual disability, postnatal dwarfism, recognizable facial dysmorphism (reminiscent of the make-up of actors of Kabuki theatre), a broad and depressed nasal tip, large prominent earlobes, a cleft or high-arched palate, scoliosis, short fifth finger, persistence of fingerpads, radiographic abnormalities of the vertebrae, hands, and hip joints, and recurrent otitis media in infancy. Note that variants in a functionally related gene, ''
KDM6A Lysine-specific demethylase 6A also known as Ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX), is a protein which in humans is encoded by the ''KDM6A'' gene. It belongs to the 2-oxoglutarate (2OG)-dependent dioxygenase super ...
,'' cause Kabuki syndrome type 2 that is an X-linked condition, shares several clinical features with Kabuki syndrome type 1 but phenotypically is a much more variable condition. Germline heterozygous missense variants in exon 38 or 39 of the ''KMT2D'' gene cause another rare distinct multiple malformation disorder characterized by choanal atresia, athelia or hypoplastic nipples, branchial sinus abnormalities, neck pits, lacrimal duct anomalies, hearing loss, external ear malformations, and thyroid abnormalities. Congenital heart disease has been associated with an excess of mutations in genes that regulate H3K4 methylation, including ''KMT2D''. Somatic frameshift and nonsense mutations in the SET and PHD domains affect 37% and 60%, respectively, of the total ''KMT2D'' mutations in cancers. Cancers with somatic mutations in ''KMT2D'' occur most commonly in the brain, lymph nodes, blood, lungs, large intestine, and endometrium. These cancers include medulloblastoma, pheochromocytoma, non-Hodgkin lymphomas, cutaneous T-cell lymphoma, Sézary syndrome, bladder, lung, and endometrial carcinomas, esophageal squamous cell carcinoma, pancreatic cancer, and prostate cancer.


Note


References


External links


GeneReviews/NCBI/NIH/UW entry on Kabuki syndrome, Kabuki Make-Up Syndrome, Niikawa-Kuroki Syndrome
* {{Transcription factors, g0 Transcription factors