HOME

TheInfoList



OR:

Lysogeny, or the lysogenic cycle, is one of two cycles of viral reproduction (the lytic cycle being the other). Lysogeny is characterized by integration of the
bacteriophage A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bac ...
nucleic acid into the host bacterium's genome or formation of a circular replicon in the bacterial cytoplasm. In this condition the bacterium continues to live and reproduce normally, while the bacteriophage lies in a dormant state in the host cell. The genetic material of the bacteriophage, called a
prophage A prophage is a bacteriophage (often shortened to "phage") genome that is integrated into the circular bacterial chromosome or exists as an extrachromosomal plasmid within the bacterial cell. Integration of prophages into the bacterial host is th ...
, can be transmitted to daughter cells at each subsequent cell division, and later events (such as
UV radiation Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiatio ...
or the presence of certain chemicals) can release it, causing proliferation of new phages via the lytic cycle. Lysogenic cycles can also occur in
eukaryote Eukaryotes () are organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms, are Eukaryotes. They belong to the group of organisms Eukaryota or Eukarya, which is one of the three domains of life. Bacter ...
s, although the method of DNA incorporation is not fully understood. For instance the
AIDS virus The human immunodeficiency viruses (HIV) are two species of ''Lentivirus'' (a subgroup of retrovirus) that infect humans. Over time, they cause acquired immunodeficiency syndrome (AIDS), a condition in which progressive failure of the immune ...
es can either infect humans (or some other primates) lytically, or lay dormant (lysogenic) as part of the infected cells' genome, keeping the ability to return to lysis at a later time. The rest of this article is about lysogeny in
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
l hosts. The difference between lysogenic and lytic cycles is that, in lysogenic cycles, the spread of the viral DNA occurs through the usual prokaryotic reproduction, whereas a lytic cycle is more immediate in that it results in many copies of the virus being created very quickly and the cell is destroyed. One key difference between the lytic cycle and the lysogenic cycle is that the latter does not lyse the host cell straight away. Phages that replicate only via the lytic cycle are known as virulent phages while phages that replicate using both lytic and lysogenic cycles are known as
temperate In geography, the temperate climates of Earth occur in the middle latitudes (23.5° to 66.5° N/S of Equator), which span between the tropics and the polar regions of Earth. These zones generally have wider temperature ranges throughout ...
phages. In the lysogenic cycle, the phage DNA first integrates into the bacterial chromosome to produce the prophage. When the bacterium reproduces, the prophage is also copied and is present in each of the daughter cells. The daughter cells can continue to replicate with the prophage present or the prophage can exit the bacterial chromosome to initiate the lytic cycle. In the lysogenic cycle the host DNA is not hydrolyzed but in the lytic cycle the host DNA is hydrolyzed in the lytic phase.


Bacteriophages

Bacteriophages are viruses that infect and replicate within a bacterium.
Temperate phage In virology, temperate refers to the ability of some bacteriophages (notably coliphage λ) to display a lysogenic life cycle. Many (but not all) temperate phages can integrate their genomes into their host bacterium's chromosome, together becoming ...
s (such as
lambda phage ''Enterobacteria phage λ'' (lambda phage, coliphage λ, officially ''Escherichia virus Lambda'') is a bacterial virus, or bacteriophage, that infects the bacterial species ''Escherichia coli'' (''E. coli''). It was discovered by Esther Leder ...
) can reproduce using both the
lytic The lytic cycle ( ) is one of the two cycles of viral reproduction (referring to bacterial viruses or bacteriophages), the other being the lysogenic cycle. The lytic cycle results in the destruction of the infected cell and its membrane. Bacter ...
and the lysogenic cycle. How a phage decides which cycle to enter depends on a variety of factors. For instance, if there are several other infecting phages (or if there is a high multiplicity), it is likely that the phage will use the lysogenic cycle. This may be useful in helping reduce the overall phage-to-host ratio and therefore preventing the phages from killing their hosts, also thereby increasing the phage’s potential for survival, making this a form of natural selection. A phage may decide to exit the chromosome and enter the lytic cycle if it is exposed to DNA-damaging agents, such as UV radiation and chemicals. Other factors with the potential to induce temperate phage release include temperature, pH, osmotic pressure, and low nutrient concentration. However, phages may also re-enter the lytic cycle spontaneously. In 80-90% of single-cell infections, phages enter the lysogenic cycle. In the other 10-20%, phages enter the lytic cycle.


Evidence of Lysogeny

It is sometimes possible to detect which cycle a phage enters by looking at the plaque morphology in bacterial plate culture. Since phages that enter the lytic cycle kill the host bacterial cells, plaques will appear clear (photo A). The plaques may also appear to have a halo-like ring around the edge, indicating that these cells were not fully lysed. In contrast, infecting phages that enter the lysogenic cycle will produce cloudy or turbid plaques, as the cells containing the lysogenic phage are not lysed and can continue growing (photo B). However, exceptions to this rule are also known to exist, where non-temperate phages still exhibit cloudy plaques, and temperate phage mutants can generate clear plaques as a result of loss of lysogen formation ability. See a comparison of clear and turbid plaques, formed by lytic and lysogenic phages, respectively, in th
Phage Discovery Guide
Detection methods of phages released from the lysogenic cycle include electron microscopy, DNA extraction, or propagation on sensitive strains. Via the lysogenic cycle, the bacteriophage's genome is not expressed and is instead integrated into the bacteria's genome to form the
prophage A prophage is a bacteriophage (often shortened to "phage") genome that is integrated into the circular bacterial chromosome or exists as an extrachromosomal plasmid within the bacterial cell. Integration of prophages into the bacterial host is th ...
. In its inactive form, a prophage gets passed on each time the host cell divides. If prophages become active, they can exit the bacterial chromosome and enter the lytic cycle, where they undergo DNA copying, protein synthesis, phage assembly, and lysis. Since the bacteriophage's genetic information is incorporated into the bacteria's genetic information as a prophage, the bacteriophage replicates passively as the bacterium divides to form daughter bacteria cells. In this scenario, the daughter bacteria cells contain prophage and are known as
lysogens A lysogen or lysogenic bacterium is a bacterial cell which can produce and transfer the ability to produce a phage. A prophage is either integrated into the host bacteria's chromosome or more rarely exists as a stable plasmid within the host c ...
. Lysogens can remain in the lysogenic cycle for many generations but can switch to the lytic cycle at any time via a process known as induction. During induction, prophage DNA is excised from the bacterial genome and is transcribed and translated to make coat proteins for the virus and regulate lytic growth. An example of a virus that uses the lysogenic cycle to its advantage is the Herpes Simplex Virus. After first entering the lytic cycle and infecting a human host, it enters the lysogenic cycle. This allows it to travel to the nervous system’s sensory neurons and remain undetected for long periods of time. In the case of genital herpes, latency is established in lumbosacral dorsal root ganglia, spinal nerve neurons. The herpes virus can then exit this dormant stage and re-enter the lytic cycle, causing disease symptoms. Thus, while herpes viruses can enter both the lytic and lysogenic cycles, latency allows the virus to survive and evade detection by the immune system due to low viral gene expression. The model organism for studying lysogeny is the lambda phage. Prophage integration (also known as homologous recombination), maintenance of lysogeny, induction, and control of phage genome excision in induction is described in detail in the
lambda phage ''Enterobacteria phage λ'' (lambda phage, coliphage λ, officially ''Escherichia virus Lambda'') is a bacterial virus, or bacteriophage, that infects the bacterial species ''Escherichia coli'' (''E. coli''). It was discovered by Esther Leder ...
article.


Fitness tradeoffs for bacteria

Bacteriophages are parasitic because they infect their hosts, use bacterial machinery to replicate, and ultimately lyse the bacteria. Temperate phages can lead to both advantages and disadvantages for their hosts via the lysogenic cycle. During the lysogenic cycle, the virus genome is incorporated as prophage and a repressor prevents viral replication. Nonetheless, a temperate phage can escape repression to replicate, produce viral particles, and lyse the bacteria. The temperate phage escaping repression would be a disadvantage for the bacteria. On the other hand, the prophage may transfer
genes In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
that enhance host virulence and resistance to the immune system. Also, the repressor produced by the prophage that prevents prophage genes from being expressed confers immunity for the host bacteria from lytic infection by related viruses. Another system, arbitrium, has recently been described for bacteriophages infecting several ''
Bacillus ''Bacillus'' (Latin "stick") is a genus of Gram-positive, rod-shaped bacteria, a member of the phylum '' Bacillota'', with 266 named species. The term is also used to describe the shape (rod) of other so-shaped bacteria; and the plural ''Bacill ...
'' species, in which the decision between lysis and lysogeny is transmitted between bacteria by a
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
factor. Stokar-Avihail A, Tal N, Erez Z, Lopatina A, Sorek R. Widespread Utilization of Peptide Communication in Phages Infecting Soil and Pathogenic Bacteria. ''Cell host & microbe''. 2019 May 8;25(5):746-55.


Lysogenic conversion

In some interactions between lysogenic phages and bacteria, the lysogenic conversion may occur, which can also be called phage conversion. It is when a temperate
phage A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bacter ...
induces a change in the
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology (biology), morphology or physical form and structure, its Developmental biology, developmental proc ...
of the infected
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
that is not part of a usual phage cycle. Changes can often involve the external membrane of the cell by making it impervious to other phages or even by increasing the pathogenic capability of the bacteria for a host. In this way, temperate bacteriophages also play a role in the spread of
virulence factor Virulence factors (preferably known as pathogenicity factors or effectors in plant science) are cellular structures, molecules and regulatory systems that enable microbial pathogens (bacteria, viruses, fungi, and protozoa) to achieve the following ...
s, such as exotoxins and exoenzymes, amongst bacteria. This change then stays in the genome of the infected bacteria and is copied and passed down to daughter cells.


Bacterial survival

Lysogenic conversion has shown to enable
biofilm A biofilm comprises any syntrophic consortium of microorganisms in which cells stick to each other and often also to a surface. These adherent cells become embedded within a slimy extracellular matrix that is composed of extracellular po ...
formation in ''
Bacillus anthracis ''Bacillus anthracis'' is a gram-positive and rod-shaped bacterium that causes anthrax, a deadly disease to livestock and, occasionally, to humans. It is the only permanent ( obligate) pathogen within the genus '' Bacillus''. Its infection is a ...
'' Strains of ''B. anthracis'' cured of all phage were unable to form biofilms, which are surface-adhered bacterial communities that enable bacteria to better access nutrients and survive environmental stresses. In addition to biofilm formation in ''B. anthracis'', lysogenic conversion of ''
Bacillus subtilis ''Bacillus subtilis'', known also as the hay bacillus or grass bacillus, is a Gram-positive, catalase-positive bacterium, found in soil and the gastrointestinal tract of ruminants, humans and marine sponges. As a member of the genus ''Bacillus ...
'', ''
Bacillus thuringiensis ''Bacillus thuringiensis'' (or Bt) is a gram-positive, soil-dwelling bacterium, the most commonly used biological pesticide worldwide. ''B. thuringiensis'' also occurs naturally in the gut of caterpillars of various types of moths and butterf ...
'', and ''
Bacillus cereus ''Bacillus cereus'' is a Gram-positive rod-shaped bacterium commonly found in soil, food, and marine sponges. The specific name, ''cereus'', meaning "waxy" in Latin, refers to the appearance of colonies grown on blood agar. Some strains are har ...
'' has shown an enhanced rate or extent of sporulation. Sporulation produces
endospores An endospore is a dormancy, dormant, tough, and non-reproductive structure produced by some bacteria in the phylum Bacillota. The name "endospore" is suggestive of a spore or seed-like form (''endo'' means 'within'), but it is not a true spore ...
, which are metabolically dormant forms of the bacteria that are highly resistant to temperature, ionizing radiation, desiccation, antibiotics, and disinfectants.


Bacterial virulence

Non-virulent bacteria have also been shown to transform into highly virulent pathogens through lysogenic conversion with the virulence factors carried on the lysogenic prophage. Virulence genes carried within prophages as discrete autonomous genetic elements, known as morons, confer an advantage to the bacteria that indirectly benefits the virus through enhanced lysogen survival. Examples: * ''
Corynebacterium diphtheriae ''Corynebacterium diphtheriae'' is the pathogenic bacterium that causes diphtheria. It is also known as the Klebs–Löffler bacillus, because it was discovered in 1884 by German bacteriologists Edwin Klebs (1834–1912) and Friedrich Löff ...
'' produces the toxin of
diphtheria Diphtheria is an infection caused by the bacterium '' Corynebacterium diphtheriae''. Most infections are asymptomatic or have a mild clinical course, but in some outbreaks more than 10% of those diagnosed with the disease may die. Signs and s ...
only when it is infected by the
phage A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bacter ...
β. In this case, the gene that codes for the toxin is carried by the phage, not the bacterium. * ''
Vibrio cholerae ''Vibrio cholerae'' is a species of Gram-negative, facultative anaerobe and comma-shaped bacteria. The bacteria naturally live in brackish or saltwater where they attach themselves easily to the chitin-containing shells of crabs, shrimps, and oth ...
'' is a non-toxic strain that can become toxic, producing cholera toxin, when it is infected with the phage CTXφ. * ''
Shigella dysenteriae ''Shigella dysenteriae'' is a species of the rod-shaped bacterial genus ''Shigella''. ''Shigella'' species can cause shigellosis ( bacillary dysentery). Shigellae are Gram-negative, non-spore-forming, facultatively anaerobic, nonmotile bacte ...
'', which produces
dysentery Dysentery (UK pronunciation: , US: ), historically known as the bloody flux, is a type of gastroenteritis that results in bloody diarrhea. Other symptoms may include fever, abdominal pain, and a feeling of incomplete defecation. Complications ...
has
toxins A toxin is a naturally occurring organic poison produced by metabolic activities of living cells or organisms. Toxins occur especially as a protein or conjugated protein. The term toxin was first used by organic chemist Ludwig Brieger (1849� ...
that fall into two major groups, Stx1 and Stx2, whose
genes In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
are considered to be part of the genome of lambdoid prophages. * ''
Streptococcus pyogenes ''Streptococcus pyogenes'' is a species of Gram-positive, aerotolerant bacteria in the genus '' Streptococcus''. These bacteria are extracellular, and made up of non-motile and non-sporing cocci (round cells) that tend to link in chains. They ...
'', produce a pyrogenic
exotoxin An exotoxin is a toxin secreted by bacteria. An exotoxin can cause damage to the host by destroying cells or disrupting normal cellular metabolism. They are highly potent and can cause major damage to the host. Exotoxins may be secreted, or, sim ...
, obtained by lysogenic conversion, which causes fever and a scarlet-red rash,
scarlet fever Scarlet fever, also known as Scarlatina, is an infectious disease caused by '' Streptococcus pyogenes'' a Group A streptococcus (GAS). The infection is a type of Group A streptococcal infection (Group A strep). It most commonly affects chi ...
. * Certain strains of ''
Clostridium botulinum ''Clostridium botulinum'' is a Gram-positive, rod-shaped, anaerobic, spore-forming, motile bacterium with the ability to produce the neurotoxin botulinum. The botulinum toxin can cause botulism, a severe flaccid paralytic disease in humans ...
'', which causes
botulism Botulism is a rare and potentially fatal illness caused by a toxin produced by the bacterium ''Clostridium botulinum''. The disease begins with weakness, blurred vision, feeling tired, and trouble speaking. This may then be followed by weakne ...
, express
botulinum toxin Botulinum toxin, or botulinum neurotoxin (BoNT), is a neurotoxic protein produced by the bacterium ''Clostridium botulinum'' and related species. It prevents the release of the neurotransmitter acetylcholine from axon endings at the neurom ...
from phage-tranduced genes.


Preventing lysogenic induction

Strategies to combat certain bacterial infections by blocking prophage induction (the transition from the lytic cycle to the lysogenic cycle) by eliminating ''in vivo'' induction agents have been proposed.
Reactive oxygen species In chemistry, reactive oxygen species (ROS) are highly reactive chemicals formed from diatomic oxygen (). Examples of ROS include peroxides, superoxide, hydroxyl radical, singlet oxygen, and alpha-oxygen. The reduction of molecular oxygen () p ...
(ROS), such as hydrogen peroxide, are strong oxidizing agents that can decompose into free radicals and cause DNA damage to bacteria, which lead to prophage induction. One potential strategy to combat prophage induction is through the use of
glutathione Glutathione (GSH, ) is an antioxidant in plants, animals, fungi, and some bacteria and archaea. Glutathione is capable of preventing damage to important cellular components caused by sources such as reactive oxygen species, free radicals, pe ...
, a strong
antioxidant Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals. This can lead to polymerization and other chain reactions. They are frequently added to industrial products, such as fuels and lubrica ...
that can remove free radical intermediates. Another approach could be to cause overexpression of CI repressor since prophage induction only occurs when the concentration of CI repressor is too low.


References

{{DEFAULTSORT:Lysogenic Cycle Bacteriophages Virology Bacteriology