HOME

TheInfoList



OR:

Loss of heterozygosity (LOH) is a type of genetic abnormality in
diploid Ploidy () is the number of complete sets of chromosomes in a cell, and hence the number of possible alleles for autosomal and pseudoautosomal genes. Sets of chromosomes refer to the number of maternal and paternal chromosome copies, respectiv ...
organisms in which one copy of an entire gene and its surrounding chromosomal region are lost. Since diploid cells have two copies of their genes, one from each parent, a single copy of the lost gene still remains. But any heterozygosity, slight differences between the versions of the gene inherited from each parent, is no longer present.


In cancer

The loss of heterozygosity is a common occurrence in
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
development. Originally, a heterozygous state is required and indicates the absence of a functional
tumor suppressor gene A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results in a loss or re ...
copy in the region of interest. However, many people remain healthy with such a loss, because there still is one functional gene left on the other chromosome of the chromosome pair. The remaining copy of the tumor suppressor gene can be inactivated by a
point mutation A point mutation is a genetic mutation where a single nucleotide base is changed, inserted or deleted from a DNA or RNA sequence of an organism's genome. Point mutations have a variety of effects on the downstream protein product—consequence ...
or via other mechanisms, resulting in a loss of heterozygosity event, and leaving no tumor suppressor gene to protect the body. Loss of heterozygosity does not imply a homozygous state (which would require the presence of two identical alleles in the cell).


Knudson two-hit hypothesis of tumorigenesis

*First Hit: The first hit is classically thought of as a point mutation, but generally arises due to epigenetic events which inactivate one copy of a tumor suppressor gene (TSG), such as Rb1. In hereditary cancer syndromes, individuals are born with the first hit. The individual does not develop cancer at this point because the remaining TSG allele on the other locus is still functioning normally. *Second Hit: While the second hit is commonly assumed to be a deletion that results in loss of the remaining functioning TSG allele, the original published mechanism of RB1 LOH was mitotic recombination/
gene conversion Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion event. Gene conversion can be either allelic, meaning that one allele of the same gene replaces a ...
/copy-neutral LOH, not deletion. There is a critical difference between deletion and CN-LOH, as the latter mechanism cannot be detected by comparative genomic hybridization (CGH)-based gene copy number counting, and requires allelic genotyping. Either way, LOH leaves only non-functioning alleles of the TSG, and the individual may go on to develop cancer.


Copy-neutral LOH

Copy-neutral LOH is thus called because no net change in the copy number occurs in the affected individual. Possible causes for copy-neutral LOH include acquired
uniparental disomy Uniparental disomy (UPD) occurs when a person receives two copies of a chromosome, or of part of a chromosome, from one parent and no copy from the other parent. UPD can be the result of heterodisomy, in which a pair of non-identical chromosomes ar ...
(UPD) and gene conversion. In UPD, a person receives two copies of a chromosome, or part of a chromosome, from one parent and no copies from the other parent due to errors in meiosis I or meiosis II. This acquired homozygosity could lead to development of cancer if the individual inherited a non-functional allele of a tumor suppressor gene. In tumor cells copy-neutral LOH can be biologically equivalent to the second hit in the Knudson hypothesis. Acquired UPD is quite common in both hematologic and solid tumors, and is reported to constitute 20 to 80% of the LOH seen in human tumors. Determination of virtual karyotypes using SNP-based arrays can provide genome-wide copy number and LOH status, including detection of copy-neutral LOH. Copy-neutral LOH cannot be detected by arrayCGH, FISH, or conventional cytogenetics. SNP-based arrays are preferred for virtual karyotyping of tumors and can be performed on fresh or paraffin-embedded tissues.


Retinoblastoma

The classical example of such a loss of protecting genes is hereditary retinoblastoma, in which one parent's contribution of the tumor suppressor Rb1 is flawed. Although most cells will have a functional second copy, chance loss of heterozygosity events in individual cells almost invariably lead to the development of this retinal cancer in the young child.


Breast Cancer and BRCA1/2

The genes
BRCA1 Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the ''BRCA1'' () gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. ''BRCA1'' is a ...
and
BRCA2 ''BRCA2'' and BRCA2 () are a human gene and its protein product, respectively. The official symbol (BRCA2, italic for the gene, nonitalic for the protein) and the official name (originally breast cancer 2; currently BRCA2, DNA repair associated) ...
show loss of heterozygosity in samplings of tumors from patients who have germline mutations. BRCA1/2 are genes that produce proteins which regulate the DNA repair pathway by binding to
Rad51 DNA repair protein RAD51 homolog 1 is a protein encoded by the gene ''RAD51''. The enzyme encoded by this gene is a member of the RAD51 protein family which assists in repair of DNA double strand breaks. RAD51 family members are homologous to th ...
.


Detection

Loss of heterozygosity can be identified in cancers by noting the presence of heterozygosity at a genetic locus in an organism's
germline In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They ...
DNA, and the absence of heterozygosity at that locus in the cancer cells. This is often done using polymorphic markers, such as microsatellites or
single-nucleotide polymorphisms In genetics, a single-nucleotide polymorphism (SNP ; plural SNPs ) is a germline substitution of a single nucleotide at a specific position in the genome. Although certain definitions require the substitution to be present in a sufficiently larg ...
, for which the two parents contributed different
alleles An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chrom ...
. Genome-wide LOH status of fresh or paraffin embedded tissue samples can be assessed by virtual karyotyping using SNP arrays.


In asexual organisms

It has been proposed that LOH may limit the longevity of asexual organisms.Archetti M. Recombination and loss of complementation: A more than two-fold cost for parthenogenesis. J Evol Biol 2004; 17(5):1084–1097. The minor allele in heterozygous areas of the genome is likely to have mild fitness consequences compared to de-novo mutations because selection has had time to remove deleterious alleles. When allelic gene conversion removes the major allele at these sites organisms are likely to experience a mild decline in fitness. Because LOH is much more common than de-novo mutation, and because the fitness consequences are closer to neutrality, this process should drive
Muller's ratchet In evolutionary genetics, Muller's ratchet (named after Hermann Joseph Muller, by analogy with a ratchet effect) is a process through which, in the absence of recombination (especially in an asexual population), an accumulation of irreversible d ...
more quickly than de-novo mutations. While this process has received little experimental investigation, it is known that major signature of asexuality in metazoan genomes appears to be genome wide LOH, a sort of anti-
meselson effect Matthew Stanley Meselson (born May 24, 1930) is a geneticist and molecular biologist currently at Harvard University, known for his demonstration, with Franklin Stahl, of semi-conservative DNA replication. After completing his Ph.D. under Linus ...
.


See also

*
Inbreeding depression Inbreeding depression is the reduced biological fitness which has the potential to result from inbreeding (the breeding of related individuals). Biological fitness refers to an organism's ability to survive and perpetuate its genetic material. ...
*
Microsatellite instability Microsatellite instability (MSI) is the condition of genetic hypermutability (predisposition to mutation) that results from impaired DNA mismatch repair (MMR). The presence of MSI represents phenotypic evidence that MMR is not functioning norma ...
*
Tumor suppressor gene A tumor suppressor gene (TSG), or anti-oncogene, is a gene that regulates a cell during cell division and replication. If the cell grows uncontrollably, it will result in cancer. When a tumor suppressor gene is mutated, it results in a loss or re ...
*
Virtual Karyotype Virtual karyotype is the digital information reflecting a karyotype, resulting from the analysis of short sequences of DNA from specific loci all over the genome, which are isolated and enumerated. It detects genomic copy number variations at a hig ...
* Knudson hypothesis *
Deletion (genetics) In genetics, a deletion (also called gene deletion, deficiency, or deletion mutation) (sign: Δ) is a mutation (a genetic aberration) in which a part of a chromosome or a sequence of DNA is left out during DNA replication. Any number of nucle ...


References


External links

{{Commons category
"Long-term study of the clinical significance of loss of heterozygosity in childhood acute lymphoblastic leukemia" – Leukemia


* ttp://www.nature.com/bjc/journal/v95/n4/full/6603298a.html "Mapping loss of heterozygosity in normal human breast cells from BRCA1/2 carriers" – BJC
"Loss of Heterozygosity Studies on Chromosome 12q in Disseminated Superficial Actinic Porokeratosis: Lessons to be Learned" – Journal of Investigative Dermatology
Genetics concepts Modification of genetic information Mutation de:Heterozygotie#Verlust der Heterozygotie