HOME

TheInfoList



OR:

Laser Doppler velocimetry, also known as laser Doppler anemometry, is the technique of using the
Doppler shift The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
in a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The firs ...
beam to measure the
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity ...
in transparent or semi-transparent
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
flows or the linear or vibratory motion of opaque, reflecting surfaces. The measurement with laser Doppler anemometry is absolute and linear with velocity and requires no pre-calibration.


Technology origin

The development of the
helium–neon laser A helium–neon laser or He-Ne laser, is a type of gas laser whose high energetic medium gain medium consists of a mixture of 10:1 ratio of helium and neon at a total pressure of about 1 torr inside of a small electrical discharge. The be ...
(He-Ne) in 1962 at the
Bell Telephone Laboratories Nokia Bell Labs, originally named Bell Telephone Laboratories (1925–1984), then AT&T Bell Laboratories (1984–1996) and Bell Labs Innovations (1996–2007), is an American industrial research and scientific development company owned by mult ...
provided the optics community with a
continuous wave A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or particle ...
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) l ...
source that was highly concentrated at a
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
of 632.8
nanometer 330px, Different lengths as in respect to the molecular scale. The nanometre (international spelling as used by the International Bureau of Weights and Measures; SI symbol: nm) or nanometer (American and British English spelling differences#-re ...
s (nm) in the red portion of the
visible spectrum The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called '' visible light'' or simply light. A typical human eye will respond to wave ...
. It was discovered that fluid flow measurements could be made using the
Doppler effect The Doppler effect or Doppler shift (or simply Doppler, when in context) is the change in frequency of a wave in relation to an observer who is moving relative to the wave source. It is named after the Austrian physicist Christian Doppler, who d ...
on a He-Ne beam scattered by small
polystyrene Polystyrene (PS) is a synthetic polymer made from monomers of the aromatic hydrocarbon styrene. Polystyrene can be solid or foamed. General-purpose polystyrene is clear, hard, and brittle. It is an inexpensive resin per unit weight. It is ...
spheres in the fluid. At the Research Laboratories of Brown Engineering Company (later Teledyne Brown Engineering), this phenomenon was used to develop the first laser Doppler flowmeter using heterodyne signal processing. This instrument became known as the laser Doppler velocimeter and the technique was called laser Doppler velocimetry. It is also referred to as laser Doppler anemometry. Early laser Doppler velocimetry applications included measuring and mapping the exhaust from
rocket engine A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accorda ...
s with speeds up to 1000 m/s, as well as determining flow in a near-surface blood artery. Similar instruments were also developed for solid surface monitoring, with applications ranging from measuring product speeds in production lines of
paper Paper is a thin sheet material produced by mechanically or chemically processing cellulose fibres derived from wood, rags, grasses or other vegetable sources in water, draining the water through fine mesh leaving the fibre evenly distribut ...
and
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resist ...
mills to measuring vibration frequency and amplitude of surfaces.


Operating principles

In its simplest and most presently used form, laser Doppler velocimetry crosses two beams of
collimated A collimated beam of light or other electromagnetic radiation has parallel rays, and therefore will spread minimally as it propagates. A perfectly collimated light beam, with no divergence, would not disperse with distance. However, diffraction p ...
,
monochromatic A monochrome or monochromatic image, object or palette is composed of one color (or values of one color). Images using only shades of grey are called grayscale (typically digital) or black-and-white (typically analog). In physics, monochro ...
, and
coherent Coherence, coherency, or coherent may refer to the following: Physics * Coherence (physics), an ideal property of waves that enables stationary (i.e. temporally and spatially constant) interference * Coherence (units of measurement), a deriv ...
laser light in the flow of the fluid being measured. The two beams are usually obtained by splitting a single beam, thus ensuring coherence between the two. Lasers with wavelengths in the visible spectrum (390–750 nm) are commonly used; these are typically He-Ne, Argon ion, or
laser diode The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with e ...
, allowing the beam path to be observed. A transmitting optics system focuses the beams to intersect at their waists (the focal point of a laser beam), where they interfere and generate a set of straight fringes. As particles (either naturally occurring or induced) entrained in the fluid pass through the fringes, they reflect light that is then collected by a receiving optics and focused on a
photodetector Photodetectors, also called photosensors, are sensors of light or other electromagnetic radiation. There is a wide variety of photodetectors which may be classified by mechanism of detection, such as photoelectric or photochemical effects, or by ...
(typically an avalanche photodiode). The reflected light fluctuates in intensity, the frequency of which is equivalent to the Doppler shift between the incident and scattered light, and is thus proportional to the component of particle velocity which lies in the plane of two laser beams. If the sensor is aligned to the flow such that the fringes are perpendicular to the flow direction, the electrical signal from the photodetector will then be proportional to the full particle velocity. By combining three devices (e.g., He-Ne, Argon ion, and laser diode) with different wavelengths, all three flow velocity components can be simultaneously measured. Another form of laser Doppler velocimetry, particularly used in early device developments, has a completely different approach akin to an
interferometer Interferometry is a technique which uses the ''interference'' of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber opti ...
. The sensor also splits the laser beam into two parts; one (the measurement beam) is focused into the flow and the second (the reference beam) passes outside the flow. A receiving optics provides a path that intersects the measurement beam, forming a small volume. Particles passing through this volume will scatter light from the measurement beam with a Doppler shift; a portion of this light is collected by the receiving optics and transferred to the photodetector. The reference beam is also sent to the photodetector where
optical heterodyne detection Optical heterodyne detection is a method of extracting information encoded as modulation of the phase, frequency or both of electromagnetic radiation in the wavelength band of visible or infrared light. The light signal is compared with standard or ...
produces an electrical signal proportional to the Doppler shift, by which the particle velocity component perpendicular to the plane of the beams can be determined. The signal detection scheme of the instrument is using the principle of optical heterodyne detection. This principle is similar to other laser Doppler-based instruments such as
laser Doppler vibrometer A laser Doppler vibrometer (LDV) is a scientific instrument that is used to make non-contact vibration measurements of a surface. The laser beam from the LDV is directed at the surface of interest, and the vibration amplitude and frequency are extr ...
, or laser surface velocimeter. It is possible to apply digital techniques to the signal to obtain the velocity as a measured fraction of the speed-of-light, and therefore in one sense Laser Doppler velocimetry is a particularly fundamental measurement traceable to the S.I. system of measurement.


Applications

In the decades since the laser Doppler velocimetry was first introduced, there has been a wide variety of laser Doppler sensors developed and applied.


Flow research

Laser Doppler velocimetry is often chosen over other forms of
flow measurement Flow measurement is the quantification of bulk fluid movement. Flow can be measured in a variety of ways. The common types of flowmeters with industrial applications are listed below: * a) Obstruction type (differential pressure or variable area) ...
because the equipment can be outside of the flow being measured and therefore has no effect on the flow. Some typical applications include the following: *Wind tunnel velocity experiments for testing aerodynamics of aircraft, missiles, cars, trucks, trains, and buildings and other structures *Velocity measurements in water flows (research in general hydrodynamics, ship hull design, rotating machinery, pipe flows, channel flow, etc.) *Fuel injection and spray research where there is a need to measure velocities inside engines or through nozzles *Environmental research (combustion research, wave dynamics,
coastal engineering Coastal engineering is a branch of civil engineering concerned with the specific demands posed by constructing at or near the coast, as well as the development of the coast itself. The hydrodynamic impact of especially waves, tides, storm sur ...
, tidal modeling, river hydrology, etc.). One disadvantage has been that laser Doppler velocimetry sensors are range-dependent; they have to be calibrated minutely and the distances where they measure has to be precisely defined. This distance restriction has recently been at least partially overcome with a new sensor that is range independent.


Automation

Laser Doppler velocimetry can be useful in automation, which includes the flow examples above. It can also be used to measure the speed of solid objects, like
conveyor belt A conveyor belt is the carrying medium of a belt conveyor system (often shortened to belt conveyor). A belt conveyor system is one of many types of conveyor systems. A belt conveyor system consists of two or more pulleys (sometimes referred to ...
s. This can be useful in situations where attaching a
rotary encoder A rotary encoder, also called a shaft encoder, is an electro-mechanical device that converts the angular position or motion of a shaft or axle to analog or digital output signals. There are two main types of rotary encoder: absolute and increm ...
(or a different mechanical speed measurement device) to the conveyor belt is impossible or impractical.


Medical applications

Laser Doppler velocimetry is used in
hemodynamics Hemodynamics or haemodynamics are the dynamics of blood flow. The circulatory system is controlled by homeostatic mechanisms of autoregulation, just as hydraulic circuits are controlled by control systems. The hemodynamic response continuously ...
research as a technique to partially quantify
blood flow Hemodynamics or haemodynamics are the dynamics of blood flow. The circulatory system is controlled by homeostatic mechanisms of autoregulation, just as hydraulic circuits are controlled by control systems. The hemodynamic response continuousl ...
in human tissues such as skin or the eye fundus. Within the clinical environment, the technology is often referred to as laser Doppler flowmetry; when images are made, it is referred to as
laser Doppler imaging Laser Doppler imaging (LDI) is an imaging method that uses a laser beam to scan live tissue. When the laser light reaches the tissue, the moving blood cells generate doppler components in the reflected ( backscattered) light. The light that comes ...
. The beam from a low-power laser (usually a
laser diode The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with e ...
) penetrates the skin sufficiently to be scattered with a Doppler shift by the
red blood cell Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek ''erythros'' for "red" and ''kytos'' for "hol ...
s and return to be concentrated on a detector. These measurements are useful to monitor the effect of exercise, drug treatments, environmental, or physical manipulations on targeted micro-sized
vascular The blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide awa ...
areas. The laser Doppler vibrometer is being used in clinical
otology Otology is a branch of medicine which studies normal and pathological anatomy and physiology of the ear (hearing and vestibular sensory systems and related structures and functions) as well as their diseases, diagnosis and treatment. Otologic ...
for the measurement of
tympanic membrane In the anatomy of humans and various other tetrapods, the eardrum, also called the tympanic membrane or myringa, is a thin, cone-shaped membrane that separates the external ear from the middle ear. Its function is to transmit sound from the ai ...
(eardrum),
malleus The malleus, or hammer, is a hammer-shaped small bone or ossicle of the middle ear. It connects with the incus, and is attached to the inner surface of the eardrum. The word is Latin for 'hammer' or 'mallet'. It transmits the sound vibrations fr ...
(hammer), and
prosthesis In medicine, a prosthesis (plural: prostheses; from grc, πρόσθεσις, prósthesis, addition, application, attachment), or a prosthetic implant, is an artificial device that replaces a missing body part, which may be lost through trau ...
head displacement in response to sound inputs of 80- to 100-dB sound-pressure level. It also has potential use in the operating room to perform measurements of prosthesis and
stapes The ''stapes'' or stirrup is a bone in the middle ear of humans and other animals which is involved in the conduction of sound vibrations to the inner ear. This bone is connected to the oval window by its annular ligament, which allows the foo ...
(stirrup) displacement.


Navigation

The Autonomous Landing Hazard Avoidance Technology used in NASA's
Project Morpheus Project Morpheus was a NASA project that began in 2010 to develop a vertical takeoff and vertical landing ( VTVL) test vehicle called the Morpheus Lander. It is intended to demonstrate a new nontoxic spacecraft propellant system (methane and o ...
lunar lander to automatically find a safe landing place contains a lidar Doppler velocimeter that measures the vehicle's altitude and velocity. The
AGM-129 ACM The AGM-129 ACM (Advanced Cruise Missile) was a low-observable, subsonic, turbofan-powered, air-launched cruise missile originally designed and built by General Dynamics and eventually acquired by Raytheon Missile Systems. Prior to its withdrawal ...
cruise missile A cruise missile is a guided missile used against terrestrial or naval targets that remains in the atmosphere and flies the major portion of its flight path at approximately constant speed. Cruise missiles are designed to deliver a large warhea ...
uses laser doppler velocimeter for precise terminal guidance.


Calibration and measurement

Laser Doppler velocimetry is used in the analysis of vibration of
MEMS Microelectromechanical systems (MEMS), also written as micro-electro-mechanical systems (or microelectronic and microelectromechanical systems) and the related micromechatronics and microsystems constitute the technology of microscopic devices, ...
devices, often to compare the performance of devices such as accelerometers-on-a-chip with their theoretical (calculated) modes of vibration. As a specific example in which the unique features of Laser Doppler velocimetry are important, the measurement of velocity of a MEMS watt balance device has allowed greater accuracy in the measurement of small forces than previously possible, through directly measuring the ratio of this velocity to the speed of light. This is a fundamental, traceable measurement that now allows traceability of small forces to the S.I. System.


See also

*
Hot-wire anemometry In meteorology, an anemometer () is a device that measures wind speed and direction. It is a common instrument used in weather stations. The earliest known description of an anemometer was by Italian architect and author Leon Battista Alberti ( ...
*
Laser Doppler imaging Laser Doppler imaging (LDI) is an imaging method that uses a laser beam to scan live tissue. When the laser light reaches the tissue, the moving blood cells generate doppler components in the reflected ( backscattered) light. The light that comes ...
*
Laser Doppler vibrometer A laser Doppler vibrometer (LDV) is a scientific instrument that is used to make non-contact vibration measurements of a surface. The laser beam from the LDV is directed at the surface of interest, and the vibration amplitude and frequency are extr ...
* Laser surface velocimeter * Molecular tagging velocimetry * Particle image velocimetry *
Particle tracking velocimetry Particle tracking velocimetry (PTV) is a velocimetry method i.e. a technique to measure velocities and trajectories of moving objects. In fluid mechanics research these objects are neutrally buoyant particles that are suspended in fluid flow. As th ...
* Photon Doppler velocimetry * Velocity interferometer system for any reflector (VISAR)


References


External links

{{Commons category, Laser Doppler velocimetry
LDA/LDV principleLDV overviewBasic Principles of VelocimetryLaser Surface Velocimetry Video
Laser applications Doppler effects Measurement Transport phenomena