Lyman–Werner Photons
   HOME

TheInfoList



OR:

A Lyman-Werner photon is an
ultraviolet Ultraviolet (UV) is a form of electromagnetic radiation with wavelength from 10 nm (with a corresponding frequency around 30  PHz) to 400 nm (750  THz), shorter than that of visible light, but longer than X-rays. UV radiation ...
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they a ...
with a photon energy in the range of 11.2 to 13.6 eV, corresponding to the
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
range in which the Lyman and Werner absorption bands of molecular
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
(H2) are found. A photon in this energy range, with a
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from ''angular frequency''. Frequency is measured in hertz (Hz) which is eq ...
that coincides with that of one of the lines in the Lyman or Werner bands, can be absorbed by H2, placing the molecule in an excited electronic state. Radiative decay (that is, decay into photons) from this excited state occurs rapidly, with roughly 15% of these decays occurring into the vibrational continuum of the molecule, resulting in its dissociation. This two-step photodissociation process, known as the Solomon process, is one of the main mechanisms by which molecular hydrogen is destroyed in the interstellar medium. In reference to the figure shown, Lyman-Werner photons are emitted as described below: *A hydrogen molecule can absorb a far-ultraviolet photon (11.2 eV < energy of the photon < 13.6 eV) and make a transition from the ground
electronic state A quantum mechanical system or particle that is bound—that is, confined spatially—can only take on certain discrete values of energy, called energy levels. This contrasts with classical particles, which can have any amount of energy. The t ...
X to excited state B (Lyman) or C (Werner). *Radiative decay occurs rapidly. *10–15% of the decays occur into the vibrational continuum. This means that the hydrogen molecule has dissociated. *Photo-dissociation fragments carry away some of the photon energy as
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
, heating the gas. *Rest of the decays are either radiative decay (
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from around ...
emission) or collisional, which ultimately end up heating the gas.


References

Photons {{Astrophysics-stub