Lux Style Award Ceremonies Directors
   HOME

TheInfoList



OR:

The lux (symbol: lx) is the unit of illuminance, or
luminous flux In photometry, luminous flux or luminous power is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of electromagnetic radiation (including infrared, ultraviolet, and visible light), in th ...
per unit area, in the
International System of Units The International System of Units, known by the international abbreviation SI in all languages and sometimes pleonastically as the SI system, is the modern form of the metric system and the world's most widely used system of measurement. E ...
(SI). It is equal to one lumen per square metre. In
photometry Photometry can refer to: * Photometry (optics), the science of measurement of visible light in terms of its perceived brightness to human vision * Photometry (astronomy), the measurement of the flux or intensity of an astronomical object's electrom ...
, this is used as a measure of the intensity, as perceived by the human eye, of light that hits or passes through a surface. It is analogous to the radiometric unit watt per square metre, but with the power at each wavelength weighted according to the luminosity function, a standardized model of human visual brightness perception. In English, "lux" is used as both the singular and plural form. The word is derived from the Latin word for "light",
lux The lux (symbol: lx) is the unit of illuminance, or luminous flux per unit area, in the International System of Units (SI). It is equal to one lumen per square metre. In photometry, this is used as a measure of the intensity, as perceived by the ...
.


Explanation


Illuminance

Illuminance is a measure of how much
luminous flux In photometry, luminous flux or luminous power is the measure of the perceived power of light. It differs from radiant flux, the measure of the total power of electromagnetic radiation (including infrared, ultraviolet, and visible light), in th ...
is spread over a given area. One can think of luminous flux (with the unit lumen) as a measure of the total "amount" of visible light present, and the illuminance as a measure of the intensity of illumination on a surface. A given amount of light will illuminate a surface more dimly if it is spread over a larger area, so illuminance is inversely proportional to area when the luminous flux is held constant. One lux is equal to one lumen per
square metre The square metre ( international spelling as used by the International Bureau of Weights and Measures) or square meter (American spelling) is the unit of area in the International System of Units (SI) with symbol m2. It is the area of a square w ...
: :1 lx = 1 lm/m2 = 1  cd· sr/m2. A flux of 1000 lumens, spread uniformly over an area of 1 square metre, lights up that square metre with an illuminance of 1000 lux. However, the same 1000 lumens spread out over 10 square metres produces a dimmer illuminance of only 100 lux. Achieving an illuminance of 500 lx might be possible in a home kitchen with a single fluorescent light fixture with an output of . To light a factory floor with dozens of times the area of the kitchen would require dozens of such fixtures. Thus, lighting a larger area to the same illuminance (lux) requires a greater luminous flux (lumen). As with other named SI units,
SI prefixes A metric prefix is a unit prefix that precedes a basic unit of measure to indicate a multiple or submultiple of the unit. All metric prefixes used today are decadic. Each prefix has a unique symbol that is prepended to any unit symbol. The pre ...
can be used. For example, 1 kilolux (klx) is 1000 lx. Here are some examples of the illuminance provided under various conditions: The illuminance provided by a light source on a surface perpendicular to the direction to the source is a measure of the strength of that source as perceived from that location. For instance, a star of apparent magnitude 0 provides 2.08 microlux (μlx) at the Earth's surface.Schlyter, Section 7
A barely perceptible magnitude 6 star provides 8 nanolux (nlx). The unobscured Sun provides an illumination of up to 100 kilolux (klx) on the Earth's surface, the exact value depending on time of year and atmospheric conditions. This direct normal illuminance is related to the
solar illuminance constant The solar constant (''GSC'') is a flux density measuring mean solar electromagnetic radiation (total solar irradiance) per unit area. It is measured on a surface perpendicular to the rays, one astronomical unit (au) from the Sun (roughly the ...
''E''sc, equal to (see
Sunlight Sunlight is a portion of the electromagnetic radiation given off by the Sun, in particular infrared, visible, and ultraviolet light. On Earth, sunlight is scattered and filtered through Earth's atmosphere, and is obvious as daylight when t ...
and
Solar constant The solar constant (''GSC'') is a flux density measuring mean solar electromagnetic radiation (total solar irradiance) per unit area. It is measured on a surface perpendicular to the rays, one astronomical unit (au) from the Sun (roughly the ...
). The illuminance on a surface depends on how the surface is tilted with respect to the source. For example, a pocket flashlight aimed at a wall will produce a given level of illumination if aimed perpendicular to the wall, but if the flashlight is aimed at increasing angles to the perpendicular (maintaining the same distance), the illuminated spot becomes larger and so is less highly illuminated. When a surface is tilted at an angle to a source, the illumination provided on the surface is reduced because the tilted surface subtends a smaller solid angle from the source, and therefore it receives less light. For a point source, the illumination on the tilted surface is reduced by a factor equal to the cosine of the angle between a ray coming from the source and the normal to the surface.Jack L. Lindsey, ''Applied Illumination Engineering'', The Fairmont Press, Inc., 1997 page 218 In practical lighting problems, given information on the way light is emitted from each source and the distance and geometry of the lighted area, a numerical calculation can be made of the illumination on a surface by adding the contributions of every point on every light source.


Relationship between illuminance and irradiance

Like all photometric units, the lux has a corresponding " radiometric" unit. The difference between any photometric unit and its corresponding radiometric unit is that radiometric units are based on physical power, with all wavelengths being weighted equally, while photometric units take into account the fact that the human eye's image-forming visual system is more sensitive to some wavelengths than others, and accordingly every wavelength is given a different weight. The weighting factor is known as the luminosity function. The lux is one lumen per square metre (lm/m2), and the corresponding radiometric unit, which measures
irradiance In radiometry, irradiance is the radiant flux ''received'' by a ''surface'' per unit area. The SI unit of irradiance is the watt per square metre (W⋅m−2). The CGS unit erg per square centimetre per second (erg⋅cm−2⋅s−1) is often used ...
, is the watt per square metre (W/m2). There is no single conversion factor between lux and W/m2; there is a different conversion factor for every wavelength, and it is not possible to make a conversion unless one knows the spectral composition of the light. The peak of the luminosity function is at 555  nm (green); the eye's image-forming visual system is more sensitive to light of this wavelength than any other. For monochromatic light ''of this wavelength'', the amount of illuminance for a given amount of irradiance is maximum: 683.002 lx per 1 W/m2; the irradiance needed to make 1 lx at this wavelength is about 1.464  mW/m2. Other wavelengths of visible light produce fewer lux per watt-per-meter-squared. The luminosity function falls to zero for wavelengths outside the visible spectrum. For a light source with mixed wavelengths, the number of lumens per watt can be calculated by means of the luminosity function. In order to appear reasonably "white", a light source cannot consist solely of the green light to which the eye's image-forming visual photoreceptors are most sensitive, but must include a generous mixture of red and blue wavelengths, to which they are much less sensitive. This means that white (or whitish) light sources produce far fewer lumens per watt than the theoretical maximum of 683.002 lm/W. The ratio between the actual number of lumens per watt and the theoretical maximum is expressed as a percentage known as the luminous efficiency. For example, a typical incandescent light bulb has a luminous efficiency of only about 2%. In reality, individual eyes vary slightly in their luminosity functions. However, photometric units are precisely defined and precisely measurable. They are based on an agreed-upon standard luminosity function based on measurements of the spectral characteristics of image-forming ''visual photoreception'' in many individual human eyes.


Use in video-camera specifications

Specifications for video cameras such as camcorders and surveillance cameras often include a minimal illuminance level in lux at which the camera will record a satisfactory image. A camera with good low-light capability will have a lower lux rating. Still cameras do not use such a specification, since longer exposure times can generally be used to make pictures at very low illuminance levels, as opposed to the case in video cameras, where a maximal exposure time is generally set by the
frame rate Frame rate (expressed in or FPS) is the frequency (rate) at which consecutive images (frames) are captured or displayed. The term applies equally to film and video cameras, computer graphics, and motion capture systems. Frame rate may also be ca ...
.


Non-SI units of illuminance

The corresponding unit in English and American traditional units is the
foot-candle A foot-candle (sometimes foot candle; abbreviated fc, lm/ft2, or sometimes ft-c) is a non- SI unit of illuminance or light intensity. The foot-candle is defined as one lumen per square foot. This unit is commonly used in lighting layouts in par ...
. One foot candle is about 10.764 lx. Since one foot-candle is the illuminance cast on a surface by a one-candela source one foot away, a lux could be thought of as a "metre-candle", although this term is discouraged because it does not conform to SI standards for unit names. One
phot A phot (ph) is a photometric unit of illuminance, or luminous flux through an area. It is not an SI unit but rather is associated with the older centimetre–gram–second system of units. The name was coined by André Blondel in 1921.Parry Moo ...
 (ph) equals 10 kilolux (10 klx). One nox (nx) equals 1 millilux (1 mlx). In astronomy, apparent magnitude is a measure of the illuminance of a star on the Earth's atmosphere. A star with apparent magnitude 0 is 2.54 microlux outside the earth's atmosphere, and 82% of that (2.08 microlux) under clear skies. A magnitude 6 star (just barely visible under good conditions) would be 8.3 nanolux. A standard candle (one candela) a kilometre away would provide an illuminance of 1 microlux—about the same as a magnitude 1 star.


Legacy Unicode symbol

Unicode includes a symbol for "lx": . It is a legacy code to accommodate old
code page In computing, a code page is a character encoding and as such it is a specific association of a set of printable characters and control characters with unique numbers. Typically each number represents the binary value in a single byte. (In some co ...
s in some Asian languages. Use of this code is not recommended in new documents.


SI photometry units


See also

* Exposure value


Notes and references


External links


Radiometry and photometry FAQ
Professor Jim Palmer's Radiometry FAQ page ( University of Arizona). {{Use dmy dates, date=February 2020 SI derived units Units of illuminance