HOME

TheInfoList



OR:

The lung-on-a-chip is a complex, three-dimensional model of a living, breathing
human lung The lungs are the primary organs of the respiratory system in humans and most other animals, including some snails and a small number of fish. In mammals and most other vertebrates, two lungs are located near the backbone on either side of t ...
on a
microchip An integrated circuit or monolithic integrated circuit (also referred to as an IC, a chip, or a microchip) is a set of electronic circuits on one small flat piece (or "chip") of semiconductor material, usually silicon. Large numbers of tiny M ...
. The device is made using human lung and
blood vessel The blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide away ...
cells and it can predict absorption of airborne
nanoparticle A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 1 ...
s and mimic the inflammatory response triggered by microbial
pathogen In biology, a pathogen ( el, πάθος, "suffering", "passion" and , "producer of") in the oldest and broadest sense, is any organism or agent that can produce disease. A pathogen may also be referred to as an infectious agent, or simply a germ ...
s. It can be used to test the effects of environmental toxins, absorption of aerosolized therapeutics, and the safety and efficacy of new drugs. It is expected to become an alternative to
animal testing Animal testing, also known as animal experimentation, animal research, and ''in vivo'' testing, is the use of non-human animals in experiments that seek to control the variables that affect the behavior or biological system under study. This ...
. The lung-on-a-chip places two layers of living tissues—the lining of the lung's air sacs and the blood vessels that surround them—across a porous, flexible boundary. Air is delivered to the lung lining cells, a rich culture medium flows in the capillary channel to mimic blood, and cyclic mechanical stretching is generated by a vacuum applied to the chambers adjacent to the cell culture channels to mimic breathing. The research findings for lung-on-a-chip were published in the June 25, 2010, issue of ''
Science Science is a systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the universe. Science may be as old as the human species, and some of the earliest archeological evidence for ...
'', the academic journal of the
American Association for the Advancement of Science The American Association for the Advancement of Science (AAAS) is an American international non-profit organization with the stated goals of promoting cooperation among scientists, defending scientific freedom, encouraging scientific respons ...
. The research was funded by the
National Institutes of Health The National Institutes of Health, commonly referred to as NIH (with each letter pronounced individually), is the primary agency of the United States government responsible for biomedical and public health research. It was founded in the late ...
, the
American Heart Association The American Heart Association (AHA) is a nonprofit organization in the United States that funds cardiovascular medical research, educates consumers on healthy living and fosters appropriate cardiac care in an effort to reduce disability and death ...
, and the
Wyss Institute for Biologically Inspired Engineering The Wyss Institute for Biologically Inspired Engineering (pronounced "veese") is a cross-disciplinary research institute at Harvard University focused on bridging the gap between academia and industry (translational medicine) by drawing inspirat ...
at
Harvard University Harvard University is a private Ivy League research university in Cambridge, Massachusetts. Founded in 1636 as Harvard College and named for its first benefactor, the Puritan clergyman John Harvard, it is the oldest institution of higher le ...
.


Inventors

The technology was developed by
Donald E. Ingber Donald E. Ingber (born 1956) is an American cell biology, cell biologist and bioengineering, bioengineer. He is the founding director of the Wyss Institute for Biologically Inspired Engineering at Harvard University,Crow, James Mitchell (19 Janua ...
, M.D., Ph.D., an American cell biologist who is the Founding Director of the Wyss Institute for Biologically Inspired Engineering at Harvard University, and Dan Dongeun Huh, Ph.D., who was a Technology Development Fellow at the Wyss Institute and is now Wilf Family Term Chair Assistant Professor in Bioengineering at the University of Pennsylvania. The device was created using a microfabrication strategy known as soft lithography that was pioneered by
George M. Whitesides George McClelland Whitesides (born August 3, 1939) is an American chemist and professor of chemistry at Harvard University. He is best known for his work in the areas of nuclear magnetic resonance spectroscopy, organometallic chemistry, molecu ...
, an American chemist, who is a professor of chemistry at Harvard, as well as a Wyss Institute core faculty member.


Testing

The response of the lung-on-a-chip to inhaled living pathogens was tested by introducing E. Coli bacteria into the air channel on the lung air sac side of the device, while flowing white blood cells through the channel on the blood vessel side. The lung cells detected the bacteria and, through the porous membrane, activated the blood vessel cells, which in turn triggered an immune response that ultimately caused the white blood cells to move to the air chamber and destroy the bacteria. Researchers also introduced a variety of nanoscale particles (such as those found in commercial products, and in air and water pollution) into the air channel. Several types of these nanoparticles entered the lung cells and caused the cells to overproduce free radicals and to induce inflammation. Many of the particles passed through the model lung into the blood channel, and mechanical breathing was found to greatly enhance nanoparticle absorption from the air sac into the blood. The Wyss Institute team is working to build other organ models, such as a gut-on-a-chip, as well as bone marrow and even cancer models. They are exploring the potential for combining organ systems, such as linking a breathing lung-on-a-chip to a beating heart-on-a-chip. The engineered organ combination could be used to test inhaled drugs and to identify new and more effective therapeutics that lack adverse cardiac side effects.


See also

*
Organ-on-a-chip An organ-on-a-chip (OOC) is a multi-channel 3-D microfluidic cell culture, integrated circuit (chip) that simulates the activities, mechanics and physiological response of an entire organ or an organ system, a type of artificial organ. It constitu ...


References

{{Reflist Lung Biotechnology