HOME

TheInfoList



OR:

In
proof compression In proof theory, an area of mathematical logic, proof compression is the problem of algorithmically compressing formal proofs. The developed algorithms can be used to improve the proofs generated by automated theorem proving tools such as SAT solver ...
LowerUnits (LU) is an algorithm used to compress propositional logic resolution proofs. The main idea of LowerUnits is to exploit the following fact:Fontaine, Pascal; Merz, Stephan; Woltzenlogel Paleo, Bruno. ''Compression of Propositional Resolution Proofs via Partial Regularization''. 23rd International Conference on Automated Deduction, 2011. Theorem: Let \varphi be a potentially redundant proof, and \eta be the redundant proof , redundant node. If \eta’s
clause In language, a clause is a constituent that comprises a semantic predicand (expressed or not) and a semantic predicate. A typical clause consists of a subject and a syntactic predicate, the latter typically a verb phrase composed of a verb with ...
is a unit clause, then \varphi is redundant. The algorithm targets exactly the class of global redundancy stemming from multiple resolutions with unit clauses. The algorithm takes its name from the fact that, when this rewriting is done and the resulting proof is displayed as a DAG ( directed acyclic graph), the unit node \eta appears lower (i.e., closer to the root) than it used to appear in the original proof. A naive implementation exploiting theorem would require the proof to be traversed and fixed after each unit node is lowered. It is possible, however, to do better by first collecting and removing all the unit nodes in a single traversal, and afterwards fixing the whole proof in a single second traversal. Finally, the collected and fixed unit nodes have to be reinserted at the bottom of the proof. Care must be taken with cases when a unit node \eta^ occurs above in the subproof that derives another unit node \eta. In such cases, \eta depends on \eta^. Let \ell be the single literal of the unit clause of \eta^. Then any occurrence of \overline in the subproof above \eta will not be cancelled by resolution inferences with \eta^ anymore. Consequently, \overline will be propagated downwards when the proof is fixed and will appear in the clause of \eta. Difficulties with such dependencies can be easily avoided if we reinsert the upper unit node \eta^ after reinserting the unit node \eta (i.e. after reinsertion, \eta^ must appear below \eta, to cancel the extra literal \overline from \eta’s clause). This can be ensured by collecting the unit nodes in a queue during a bottom-up traversal of the proof and reinserting them in the order they were queued. The algorithm for fixing a proof containing many roots performs a top-down traversal of the proof, recomputing the resolvents and replacing broken nodes (e.g. nodes having deletedNodeMarker as one of their parents) by their surviving parents (e.g. the other parent, in case one parent was deletedNodeMarker). When unit nodes are collected and removed from a proof of a clause \kappa and the proof is fixed, the clause \kappa^ in the root node of the new proof is not equal to \kappa anymore, but contains (some of) the duals of the literals of the unit clauses that have been removed from the proof. The reinsertion of unit nodes at the bottom of the proof resolves \kappa^ with the clauses of (some of) the collected unit nodes, in order to obtain a proof of \kappa again.


Algorithm

General structure of the algorithm Input: A proof \psi Output: A proof \psi^ with no global redundancy with unit redundant node (unitsQueue, \psi_) ← collectUnits(\psi); \psi_ ← fix(\psi_); fixedUnitsQueue ← fix(unitsQueue); \psi^ ← reinsertUnits(\psi_, fixedUnitsQueue); return \psi^; We collect the unit clauses as follow Input: A proof \psi Output: A pair containing a queue of all unit nodes (unitsQueue) that are used more than once in \psi and a broken proof \psi_ \psi_\psi; traverse \psi_ bottom-up and foreach node \eta in \psi_ do if \eta is unit and \eta has more than one child then add \eta to unitsQueue; remove \eta from \psi_; end end return (unitsQueue, \psi_); Then we reinsert the units Input: A proof \psi_ (with a single root) and a queue q of root nodes Output: A proof \psi^ \psi^\psi_; while q\neq\emptyset do \eta ← first element of q; q ← tail of q; if \eta is resolvable with root of \psi^ then \psi^ ← resolvent of \eta with the root of \psi^; end end return \psi^;


Notes

{{reflist Automated theorem proving Proof theory