Low-temperature Polycrystalline Silicon
   HOME

TheInfoList



OR:

Low-temperature polycrystalline silicon (LTPS) is polycrystalline silicon that has been synthesized at relatively low temperatures (~650 °C and lower) compared to in traditional methods (above 900 °C). LTPS is important for display industries, since the use of large glass panels prohibits exposure to deformative high temperatures. More specifically, the use of polycrystalline silicon in
thin-film transistors A thin-film transistor (TFT) is a special type of field-effect transistor (FET) where the transistor is thin relative to the plane of the device. TFTs are grown on a supporting (but non-conducting) substrate. A common substrate is glass, becaus ...
(LTPS-TFT) has high potential for large-scale production of electronic devices like flat panel LCD displays or image sensors.


Development of polycrystalline silicon

Polycrystalline silicon (p-Si) is a pure and conductive form of the element composed of many crystallites, or grains of highly ordered crystal lattice. In 1984, studies showed that
amorphous silicon Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films ont ...
(a-Si) is an excellent precursor for forming p-Si films with stable structures and low surface roughness. Silicon film is synthesized by low-pressure chemical vapor deposition (LPCVD) to minimize surface roughness. First, amorphous silicon is deposited at 560–640 °C. Then it is thermally annealed (recrystallized) at 950–1000 °C. Starting with the amorphous film, rather than directly depositing crystals, produces a product with a superior structure and a desired smoothness. In 1988, researchers discovered that further lowering temperature during annealing, together with advanced plasma-enhanced chemical vapor deposition (PECVD), could facilitate even higher degrees of conductivity. These techniques have profoundly impacted the microelectronics, photovoltaic, and display enhancement industries.


Use in liquid-crystal display

Amorphous silicon TFTs have been widely used in liquid-crystal display (LCD) flat panels because they can be assembled into complex high-current driver circuits. Amorphous Si-TFT electrodes drive the alignment of crystals in LCDs. The evolution to LTPS-TFTs can have many benefits such as higher device resolution, lower synthesis temperature, and reduced price of essential substrates. However, LTPS-TFTs also have several drawbacks. For example, the area of TFTs in traditional a-Si devices is large, resulting in a small aperture ratio (the amount of area which is not blocked by the opaque TFT and thus admits light). The incompatibility of different aperture ratios prevents LTPS-based complex circuits and drivers from being integrated into a-Si material. Additionally, the quality of LTPS decreases over time due to an increase in temperature upon turning on the transistor, which degrades the film by breaking the Si-H bonds in the material. This would cause the device to suffer from drain breakdown and current leakage, most notably in small and thin transistors, which dissipate heat poorly.


Processing by laser annealing

XeCl Excimer-Laser Annealing (ELA) is the first key method to produce p-Si by melting a-Si material through
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fi ...
irradiation. The counterpart of a-Si, polycrystalline silicon, which can be synthesized from amorphous silicon by certain procedures, has several advantages over widely used a-Si TFT: # High electron mobility rate; # High resolution and aperture ratio; # Available for high integration of circuits. XeCl-ELA succeeds in crystallizing a-Si (thickness ranges from 500-10000A) into p-Si without heating the substrates.'' Sameshima, T., S. Usui, and M. Sekiya. "XeClExcimer Laser Annealing Used in the Fabrication of Poly-Si TFT's." IEEE Electron Device Letters 07.05 (1986): 276-78. IEEE Xplore. Web. 2 Mar. 2015. The polycrystalline form has larger grains that yield better mobility for TFTs due to reduced scattering from grain boundaries. This technique leads to the successful integration of complicated circuits in LCD displays.


Development of LTPS-TFT devices

Apart from the improvement of the TFTs themselves, the successful application of LTPS to graphic display also depends on innovative circuits. One recent technique involves a pixel circuit in which the outgoing current from the transistor is independent of the threshold voltage, thus producing uniform brightness.Banger, K. K., Y. Yamashita, K. Mori, R. L. Peterson, T. Leedham, J. Rickard, and H. Sirringhaus. "Low-temperature, High-performance Solution-processed Metal Oxide Thin-film Transistors Formed by a ‘sol–gel on Chip’ Process." Nature Materials (2010): 45–50. Nature Materials. Web. 2 Mar. 2015.'' Tai, Y.-H., B.-T. Chen, Y.-J. Kuo, C.-C. Tsai, K.-Y. Chiang, Y.-J. Wei, and H.-C. Cheng. "A New Pixel Circuit for Driving Organic Light-Emitting Diode With Low Temperature Polycrystalline Silicon Thin-Film Transistors." Journal of Display Technology 01.01 (2015): 100-104. IEEE Xplore. Web. 2 Mar. 2015. LTPS-TFT is commonly used to drive organic
light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (co ...
(OLED) displays because it has high resolution and accommodation for large panels. However, variations in LTPS structure would result in non-uniform threshold voltage for signals and non-uniform brightness using traditional circuits. The new pixel circuit includes four n-type TFTs, one p-type TFT, a capacitor, and a control element to control the image resolution. Enhancing the performance and microlithography for TFTs is important for advancing LTPS active-matrix OLEDs. These many important techniques have allowed the mobility of crystalline film to reach up to 13 cm2/Vs, and they have helped to mass-produce LEDs and LCDs over 500 ppi in resolution.


See also

*
Amorphous silicon Amorphous silicon (a-Si) is the non-crystalline form of silicon used for solar cells and thin-film transistors in LCDs. Used as semiconductor material for a-Si solar cells, or thin-film silicon solar cells, it is deposited in thin films ont ...
* Polycrystalline silicon * Monocrystalline silicon *
Wafer (electronics) In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer ser ...
*
Photovoltaics Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially ...
*
Light-emitting diode A light-emitting diode (LED) is a semiconductor device that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons. The color of the light (co ...
* Liquid-crystal display


References

{{Reflist Electronics manufacturing Liquid crystal displays Silicon, Polycrystalline Crystals Silicon solar cells Silicon forms