HOME

TheInfoList



OR:

The logrank test, or log-rank test, is a hypothesis test to compare the
survival Survival or survivorship, the act of surviving, is the propensity of something to continue existing, particularly when this is done despite conditions that might kill or destroy it. The concept can be applied to humans and other living things ...
distributions of two samples. It is a nonparametric test and appropriate to use when the data are right skewed and censored (technically, the censoring must be non-informative). It is widely used in
clinical trials Clinical trials are prospective biomedical or behavioral research studies on human subject research, human participants designed to answer specific questions about biomedical or behavioral interventions, including new treatments (such as novel v ...
to establish the efficacy of a new treatment in comparison with a control treatment when the measurement is the time to event (such as the time from initial treatment to a heart attack). The test is sometimes called the Mantel–Cox test. The logrank test can also be viewed as a time-stratified Cochran–Mantel–Haenszel test. The test was first proposed by Nathan Mantel and was named the ''logrank test'' by
Richard Richard is a male given name. It originates, via Old French, from compound of the words descending from Proto-Germanic language">Proto-Germanic ''*rīk-'' 'ruler, leader, king' and ''*hardu-'' 'strong, brave, hardy', and it therefore means 'st ...
and Julian Peto.


Definition

The logrank test statistic compares estimates of the hazard functions of the two groups at each observed event time. It is constructed by computing the observed and expected number of events in one of the groups at each observed event time and then adding these to obtain an overall summary across all-time points where there is an event. Consider two groups of patients, e.g., treatment vs. control. Let 1, \ldots, J be the distinct times of observed events in either group. Let N_ and N_ be the number of subjects "at risk" (who have not yet had an event or been censored) at the start of period j in the groups, respectively. Let O_ and O_ be the observed number of events in the groups at time j. Finally, define N_j = N_ + N_ and O_j = O_ + O_. The
null hypothesis The null hypothesis (often denoted ''H''0) is the claim in scientific research that the effect being studied does not exist. The null hypothesis can also be described as the hypothesis in which no relationship exists between two sets of data o ...
is that the two groups have identical hazard functions, H_0 : h_1(t) = h_2(t). Hence, under H_0, for each group i = 1, 2, O_ follows a
hypergeometric distribution In probability theory and statistics, the hypergeometric distribution is a Probability distribution#Discrete probability distribution, discrete probability distribution that describes the probability of k successes (random draws for which the ...
with parameters N_j, N_, O_j. This distribution has expected value E_ = O_j \frac and variance V_ = E_ \left( \frac \right) \left( \frac \right). For all j = 1, \ldots, J, the logrank statistic compares O_ to its expectation E_ under H_0. It is defined as :Z_i = \frac \ \xrightarrow\ \mathcal N(0,1)      (for i=1 or 2) It is easy to see that for all j, O_ - E_ = -(O_ - E_) and V_ = V_, so Z_2 = -Z_1. By the
central limit theorem In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the Probability distribution, distribution of a normalized version of the sample mean converges to a Normal distribution#Standard normal distributi ...
, the distribution of each Z_i converges to that of a standard normal distribution as J approaches infinity and therefore can be approximated by the standard normal distribution for a sufficiently large J. An improved approximation can be obtained by equating this quantity to Pearson type I or II (beta) distributions with matching first four moments, as described in Appendix B of the Peto and Peto paper.


Asymptotic distribution

If the two groups have the same survival function, the logrank statistic is approximately standard normal. A one-sided level \alpha test will reject the null hypothesis if Z>z_\alpha where z_\alpha is the upper \alpha quantile of the standard normal distribution. If the hazard ratio is \lambda, there are n total subjects, d is the probability a subject in either group will eventually have an event (so that nd is the expected number of events at the time of the analysis), and the proportion of subjects randomized to each group is 50%, then the logrank statistic is approximately normal with mean (\log) \, \sqrt and variance 1. For a one-sided level \alpha test with power 1-\beta, the sample size required is n = \frac where z_\alpha and z_\beta are the quantiles of the standard normal distribution.


Joint distribution

Suppose Z_1 and Z_2 are the logrank statistics at two different time points in the same study ( Z_1 earlier). Again, assume the hazard functions in the two groups are proportional with hazard ratio \lambda and d_1 and d_2 are the probabilities that a subject will have an event at the two time points where d_1 \leq d_2 . Z_1 and Z_2 are approximately bivariate normal with means \log \, \sqrt and \log \, \sqrt and correlation \sqrt . Calculations involving the joint distribution are needed to correctly maintain the error rate when the data are examined multiple times within a study by a Data Monitoring Committee.


Relationship to other statistics

*The logrank statistic can be derived as the score test for the Cox proportional hazards model comparing two groups. It is therefore asymptotically equivalent to the likelihood ratio test statistic based from that model. *The logrank statistic is asymptotically equivalent to the likelihood ratio test statistic for any family of distributions with proportional hazard alternative. For example, if the data from the two samples have
exponential distribution In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuousl ...
s. *If Z is the logrank statistic, D is the number of events observed, and \hat is the estimate of the hazard ratio, then \log \approx Z \, \sqrt . This relationship is useful when two of the quantities are known (e.g. from a published article), but the third one is needed. *The logrank statistic can be used when observations are censored. If censored observations are not present in the data then the
Wilcoxon rank sum test Wilcoxon is a surname, and may refer to: * Charles Wilcoxon, drum educator * Henry Wilcoxon, an actor * Frank Wilcoxon, chemist and statistician, inventor of two non-parametric tests for statistical significance In statistical hypothesis testing ...
is appropriate. *The logrank statistic gives all calculations the same weight, regardless of the time at which an event occurs. The Peto logrank test statistic gives more weight to earlier events when there are a large number of observations.


Test assumptions

The logrank test is based on the same assumptions as the Kaplan-Meier survival curve—namely, that censoring is unrelated to prognosis, the survival probabilities are the same for subjects recruited early and late in the study, and the events happened at the times specified. Deviations from these assumptions matter most if they are satisfied differently in the groups being compared, for example if censoring is more likely in one group than another.


See also

* Kaplan–Meier estimator *
Hazard ratio In survival analysis, the hazard ratio (HR) is the ratio of the hazard rates corresponding to the conditions characterised by two distinct levels of a treatment variable of interest. For example, in a clinical study of a drug, the treated popula ...


References

{{DEFAULTSORT:Logrank Test Survival analysis Time series statistical tests