HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a mathematical object is said to satisfy a property locally, if the property is satisfied on some limited, immediate portions of the object (e.g., on some ''sufficiently small'' or ''arbitrarily small'' neighborhoods of points).


Properties of a point on a function

Perhaps the best-known example of the idea of locality lies in the concept of
local minimum In mathematical analysis, the maximum and minimum of a function are, respectively, the greatest and least value taken by the function. Known generically as extremum, they may be defined either within a given range (the ''local'' or ''relative ...
(or
local maximum In mathematical analysis, the maximum and minimum of a function (mathematics), function are, respectively, the greatest and least value taken by the function. Known generically as extremum, they may be defined either within a given Interval (ma ...
), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate
neighborhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
of points. This is to be contrasted with the idea of global minimum (or global maximum), which corresponds to the minimum (resp., maximum) of the function across its entire domain.


Properties of a single space

A
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
is sometimes said to exhibit a property locally, if the property is exhibited "near" each point in one of the following ways: # Each point has a
neighborhood A neighbourhood (Commonwealth English) or neighborhood (American English) is a geographically localized community within a larger town, city, suburb or rural area, sometimes consisting of a single street and the buildings lining it. Neigh ...
exhibiting the property; # Each point has a neighborhood base of sets exhibiting the property. Here, note that condition (2) is for the most part stronger than condition (1), and that extra caution should be taken to distinguish between the two. For example, some variation in the definition of
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
can arise as a result of the different choices of these conditions.


Examples

*
Locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
topological spaces *
Locally connected In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting of open connected sets. As a stronger notion, the space ''X'' is locally path connected if ev ...
and
Locally path-connected In topology and other branches of mathematics, a topological space ''X'' is locally connected if every point admits a neighbourhood basis consisting of open connected sets. As a stronger notion, the space ''X'' is locally path connected if e ...
topological spaces * Locally Hausdorff, Locally regular, Locally normal etc... * Locally metrizable


Properties of a pair of spaces

Given some notion of equivalence (e.g.,
homeomorphism In mathematics and more specifically in topology, a homeomorphism ( from Greek roots meaning "similar shape", named by Henri Poincaré), also called topological isomorphism, or bicontinuous function, is a bijective and continuous function ...
,
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of differentiable manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are continuously differentiable. Definit ...
,
isometry In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. The word isometry is derived from the Ancient Greek: ἴσος ''isos'' me ...
) between
topological space In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
s, two spaces are said to be locally equivalent if every point of the first space has a neighborhood which is equivalent to a neighborhood of the second space. For instance, the
circle A circle is a shape consisting of all point (geometry), points in a plane (mathematics), plane that are at a given distance from a given point, the Centre (geometry), centre. The distance between any point of the circle and the centre is cal ...
and the line are very different objects. One cannot stretch the circle to look like the line, nor compress the line to fit on the circle without gaps or overlaps. However, a small piece of the circle can be stretched and flattened out to look like a small piece of the line. For this reason, one may say that the circle and the line are locally equivalent. Similarly, the
sphere A sphere (from Ancient Greek, Greek , ) is a surface (mathematics), surface analogous to the circle, a curve. In solid geometry, a sphere is the Locus (mathematics), set of points that are all at the same distance from a given point in three ...
and the plane are locally equivalent. A small enough observer standing on the
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is ...
of a sphere (e.g., a person and the Earth) would find it indistinguishable from a plane.


Properties of infinite groups

For an
infinite group In group theory, an area of mathematics, an infinite group is a group whose underlying set contains an infinite number of elements. In other words, it is a group of infinite order. Examples * (Z, +), the group of integers with addition is in ...
, a "small neighborhood" is taken to be a finitely generated
subgroup In group theory, a branch of mathematics, a subset of a group G is a subgroup of G if the members of that subset form a group with respect to the group operation in G. Formally, given a group (mathematics), group under a binary operation  ...
. An infinite group is said to be locally ''P'' if every finitely generated subgroup is ''P''. For instance, a group is locally finite if every finitely generated subgroup is finite, and a group is locally soluble if every finitely generated subgroup is
soluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
.


Properties of finite groups

For
finite group In abstract algebra, a finite group is a group whose underlying set is finite. Finite groups often arise when considering symmetry of mathematical or physical objects, when those objects admit just a finite number of structure-preserving tra ...
s, a "small neighborhood" is taken to be a subgroup defined in terms of a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
''p'', usually the local subgroups, the
normalizer In mathematics, especially group theory, the centralizer (also called commutant) of a subset ''S'' in a group ''G'' is the set \operatorname_G(S) of elements of ''G'' that commute with every element of ''S'', or equivalently, the set of ele ...
s of the nontrivial ''p''-subgroups. In which case, a property is said to be local if it can be detected from the local subgroups. Global and local properties formed a significant portion of the early work on the
classification of finite simple groups In mathematics, the classification of finite simple groups (popularly called the enormous theorem) is a result of group theory stating that every List of finite simple groups, finite simple group is either cyclic group, cyclic, or alternating gro ...
, which was carried out during the 1960s.


Properties of commutative rings

{{main, local ring For commutative rings, ideas of
algebraic geometry Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
make it natural to take a "small neighborhood" of a ring to be the localization at a
prime ideal In algebra, a prime ideal is a subset of a ring (mathematics), ring that shares many important properties of a prime number in the ring of Integer#Algebraic properties, integers. The prime ideals for the integers are the sets that contain all th ...
. In which case, a property is said to be local if it can be detected from the
local ring In mathematics, more specifically in ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on algebraic varieties or manifolds, or of ...
s. For instance, being a
flat module In algebra, flat modules include free modules, projective modules, and, over a principal ideal domain, torsion-free modules. Formally, a module (mathematics), module ''M'' over a ring (mathematics), ring ''R'' is ''flat'' if taking the tensor prod ...
over a commutative ring is a local property, but being a
free module In mathematics, a free module is a module that has a ''basis'', that is, a generating set that is linearly independent. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in the commu ...
is not. For more, see
Localization of a module In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fractions ...
.


See also

* Local path connectedness *
Local-global principle In mathematics, Helmut Hasse's local–global principle, also known as the Hasse principle, is the idea that one can find an diophantine equation, integer solution to an equation by using the Chinese remainder theorem to piece together solutions mo ...


References

General topology Homeomorphisms