HOME

TheInfoList



OR:

The following is a list of
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along with ...
s (
antiderivative In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically ...
functions) of irrational functions. For a complete list of integral functions, see lists of integrals. Throughout this article the
constant of integration In calculus, the constant of integration, often denoted by C (or c), is a constant term added to an antiderivative of a function f(x) to indicate that the indefinite integral of f(x) (i.e., the set of all antiderivatives of f(x)), on a connect ...
is omitted for brevity.


Integrals involving ''r'' =

: \int r\,dx = \frac\left(x r +a^2\,\ln\left(x+r\right)\right) : \int r^3\,dx = \fracxr^3+\fraca^2xr+\fraca^4\ln\left(x+r\right) : \int r^5\,dx = \fracxr^5+\fraca^2xr^3+\fraca^4xr+\fraca^6\ln\left(x+r\right) : \int x r\,dx = \frac : \int x r^3\,dx = \frac : \int x r^\,dx = \frac : \int x^2 r\,dx = \frac-\frac-\frac\ln\left(x+r\right) : \int x^2 r^3\,dx = \frac-\frac-\frac-\frac\ln\left(x+r\right) : \int x^3 r\,dx = \frac - \frac : \int x^3 r^3\,dx = \frac-\frac : \int x^3 r^\,dx = \frac - \frac : \int x^4 r\,dx = \frac-\frac+\frac+\frac\ln\left(x+r\right) : \int x^4 r^3\,dx = \frac-\frac+\frac+\frac+\frac\ln\left(x+r\right) : \int x^5 r\,dx = \frac - \frac + \frac : \int x^5 r^3\,dx = \frac - \frac + \frac : \int x^5 r^\,dx = \frac - \frac+\frac : \int\frac = r-a\ln\left, \frac\ = r - a\, \operatorname\frac : \int\frac = \frac+a^2r-a^3\ln\left, \frac\ : \int\frac = \frac+\frac+a^4r-a^5\ln\left, \frac\ : \int\frac = \frac+\frac+\frac+a^6r-a^7\ln\left, \frac\ : \int\frac = \operatorname\frac = \ln\left( \frac \right) : \int\frac = \frac : \int\frac = r : \int\frac = -\frac : \int\frac = \fracr-\frac\,\operatorname\frac = \fracr-\frac\ln\left( \frac \right) : \int\frac = -\frac\,\operatorname\frac = -\frac\ln\left, \frac\


Integrals involving ''s'' =

Assume ''x''2 > ''a''2 (for ''x''2 < ''a''2, see next section): : \int s\,dx = \frac\left(xs-a^\ln\left, x+s\\right) : \int xs\,dx = \fracs^3 : \int\frac = s - , a, \arccos\left, \frac\ : \int\frac = \ln\left, \frac\ Here \ln\left, \frac\ =\operatorname(x)\,\operatorname\left, \frac\ =\frac\ln\left(\frac\right), where the positive value of \operatorname\left, \frac\ is to be taken. : \int\frac = s : \int\frac = -\frac : \int\frac = -\frac : \int\frac = -\frac : \int\frac = -\frac : \int\frac = -\frac\frac+\frac\int\frac : \int\frac = \frac+\frac\ln\left, \frac\ : \int\frac = -\frac+\ln\left, \frac\ : \int\frac = \frac+\fraca^2xs+\fraca^4\ln\left, \frac\ : \int\frac = \frac-\frac+\fraca^2\ln\left, \frac\ : \int\frac = -\frac-\frac\frac+\ln\left, \frac\ : \int\frac = (-1)^\frac\sum_^\frac\frac\qquad\mboxn>m\ge0\mbox : \int\frac = -\frac\frac : \int\frac = \frac\left frac-\frac\frac\right/math> : \int\frac =-\frac\left frac-\frac\frac+\frac\frac\right/math> : \int\frac =\frac\left frac-\frac\frac+\frac\frac-\frac\frac\right/math> : \int\frac = -\frac\frac : \int\frac = \frac\left frac\frac-\frac\frac\right/math> : \int\frac = -\frac\left frac\frac-\frac\frac+\frac\frac\right/math>


Integrals involving ''u'' =

: \int u\,dx = \frac\left(xu+a^2\arcsin\frac\right) \qquad\mbox, x, \leq, a, \mbox : \int xu\,dx = -\frac u^3 \qquad\mbox, x, \leq, a, \mbox : \int x^2u\,dx = -\frac u^3+\frac(xu+a^2\arcsin\frac) \qquad\mbox, x, \leq, a, \mbox : \int\frac = u-a\ln\left, \frac\ \qquad\mbox, x, \leq, a, \mbox : \int\frac = \arcsin\frac \qquad\mbox, x, \leq, a, \mbox : \int\frac = \frac\left(-xu+a^2\arcsin\frac\right) \qquad\mbox, x, \leq, a, \mbox : \int u\,dx = \frac\left(xu-\sgn x\,\operatorname\left, \frac\\right) \qquad\mbox, x, \ge, a, \mbox :\int \frac\,dx = -u \qquad\mbox, x, \leq, a, \mbox


Integrals involving ''R'' =

Assume (''ax''2 + ''bx'' + ''c'') cannot be reduced to the following expression (''px'' + ''q'')2 for some ''p'' and ''q''. : \int\frac = \frac\ln\left, 2\sqrtR+2ax+b\ \qquad \mboxa>0\mbox : \int\frac = \frac\,\operatorname\frac \qquad \mboxa>0\mbox4ac-b^2>0\mbox : \int\frac = \frac\ln, 2ax+b, \quad \mboxa>0\mbox4ac-b^2=0\mbox : \int\frac = -\frac\arcsin\frac \qquad \mboxa<0\mbox4ac-b^2<0\mbox\left, 2ax+b\<\sqrt\mbox : \int\frac = \frac : \int\frac = \frac\left(\frac+\frac\right) : \int\frac = \frac\left(\frac+4a(n-1)\int\frac\right) : \int\frac\,dx = \frac-\frac\int\frac : \int\frac\,dx = -\frac : \int\frac\,dx = -\frac-\frac\int\frac : \int\frac = -\frac\ln \left, \frac\, ~ c > 0 : \int\frac = -\frac\operatorname\left(\frac\right), ~ c < 0 : \int\frac = \frac\operatorname\left(\frac\right), ~ c < 0, b^2-4ac>0 : \int\frac = -\frac\left(\sqrt\right), ~ c = 0 : \int\frac\,dx = \fracR+\frac\int\frac : \int \frac = -\frac-\frac \int \frac : \int R\,dx = \frac R + \frac \int \frac : \int x R\,dx = \frac-\frac R - \frac \int \frac : \int x^ R\,dx = \fracR^3+\frac \int R\,dx : \int \frac\,dx = R + \frac \int \frac+c \int \frac : \int \frac\,dx = -\frac+a \int \frac+ \frac \int \frac : \int \frac = \frac+ \frac \int \frac


Integrals involving ''S'' =

: \int S\,dx = \frac : \int \frac = \frac : \int \frac = \begin -\dfrac \operatorname\left( \dfrac\right) & \mboxb > 0, \quad a x > 0\mbox \\ -\dfrac \operatorname\left( \dfrac\right) & \mboxb > 0, \quad a x < 0\mbox \\ \dfrac \arctan\left( \dfrac\right) & \mboxb < 0\mbox \\ \end : \int\frac\,dx = \begin 2 \left( S - \sqrt\,\operatorname\left( \dfrac\right)\right) & \mboxb > 0, \quad a x > 0\mbox \\ 2 \left( S - \sqrt\,\operatorname\left( \dfrac\right)\right) & \mboxb > 0, \quad a x < 0\mbox \\ 2 \left( S - \sqrt \arctan\left( \dfrac\right)\right) & \mboxb < 0\mbox \\ \end : \int \frac\,dx = \frac \left( x^ S - b n \int \frac\,dx\right) : \int x^ S\,dx = \frac \left(x^ S^ - n b \int x^ S\,dx\right) : \int \frac\,dx = -\frac \left( \frac + \left( n - \frac\right) a \int \frac\right)


References

* * Milton Abramowitz and Irene A. Stegun, eds., '' Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables'' 1972, Dover: New York. ''(Se
chapter 3
)'' * (Several previous editions as well.) {{Lists of integrals Irrational functions