HOME

TheInfoList



OR:

The following is a list of
integral In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented i ...
s (
antiderivative In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function is a differentiable function whose derivative is equal to the original function . This can be stated symbolically ...
functions) of
irrational function In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rati ...
s. For a complete list of integral functions, see
lists of integrals Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, ...
. Throughout this article the
constant of integration In calculus, the constant of integration, often denoted by C (or c), is a constant term added to an antiderivative of a function f(x) to indicate that the indefinite integral of f(x) (i.e., the set of all antiderivatives of f(x)), on a connected ...
is omitted for brevity.


Integrals involving ''r'' =

: \int r\,dx = \frac\left(x r +a^2\,\ln\left(x+r\right)\right) : \int r^3\,dx = \fracxr^3+\fraca^2xr+\fraca^4\ln\left(x+r\right) : \int r^5\,dx = \fracxr^5+\fraca^2xr^3+\fraca^4xr+\fraca^6\ln\left(x+r\right) : \int x r\,dx = \frac : \int x r^3\,dx = \frac : \int x r^\,dx = \frac : \int x^2 r\,dx = \frac-\frac-\frac\ln\left(x+r\right) : \int x^2 r^3\,dx = \frac-\frac-\frac-\frac\ln\left(x+r\right) : \int x^3 r\,dx = \frac - \frac : \int x^3 r^3\,dx = \frac-\frac : \int x^3 r^\,dx = \frac - \frac : \int x^4 r\,dx = \frac-\frac+\frac+\frac\ln\left(x+r\right) : \int x^4 r^3\,dx = \frac-\frac+\frac+\frac+\frac\ln\left(x+r\right) : \int x^5 r\,dx = \frac - \frac + \frac : \int x^5 r^3\,dx = \frac - \frac + \frac : \int x^5 r^\,dx = \frac - \frac+\frac : \int\frac = r-a\ln\left, \frac\ = r - a\, \operatorname\frac : \int\frac = \frac+a^2r-a^3\ln\left, \frac\ : \int\frac = \frac+\frac+a^4r-a^5\ln\left, \frac\ : \int\frac = \frac+\frac+\frac+a^6r-a^7\ln\left, \frac\ : \int\frac = \operatorname\frac = \ln\left( \frac \right) : \int\frac = \frac : \int\frac = r : \int\frac = -\frac : \int\frac = \fracr-\frac\,\operatorname\frac = \fracr-\frac\ln\left( \frac \right) : \int\frac = -\frac\,\operatorname\frac = -\frac\ln\left, \frac\


Integrals involving ''s'' =

Assume ''x''2 > ''a''2 (for ''x''2 < ''a''2, see next section): : \int s\,dx = \frac\left(xs-a^\ln\left, x+s\\right) : \int xs\,dx = \fracs^3 : \int\frac = s - , a, \arccos\left, \frac\ : \int\frac = \ln\left, \frac\ Here \ln\left, \frac\ =\operatorname(x)\,\operatorname\left, \frac\ =\frac\ln\left(\frac\right), where the positive value of \operatorname\left, \frac\ is to be taken. : \int\frac = s : \int\frac = -\frac : \int\frac = -\frac : \int\frac = -\frac : \int\frac = -\frac : \int\frac = -\frac\frac+\frac\int\frac : \int\frac = \frac+\frac\ln\left, \frac\ : \int\frac = -\frac+\ln\left, \frac\ : \int\frac = \frac+\fraca^2xs+\fraca^4\ln\left, \frac\ : \int\frac = \frac-\frac+\fraca^2\ln\left, \frac\ : \int\frac = -\frac-\frac\frac+\ln\left, \frac\ : \int\frac = (-1)^\frac\sum_^\frac\frac\qquad\mboxn>m\ge0\mbox : \int\frac = -\frac\frac : \int\frac = \frac\left frac-\frac\frac\right/math> : \int\frac =-\frac\left frac-\frac\frac+\frac\frac\right/math> : \int\frac =\frac\left frac-\frac\frac+\frac\frac-\frac\frac\right/math> : \int\frac = -\frac\frac : \int\frac = \frac\left frac\frac-\frac\frac\right/math> : \int\frac = -\frac\left frac\frac-\frac\frac+\frac\frac\right/math>


Integrals involving ''u'' =

: \int u\,dx = \frac\left(xu+a^2\arcsin\frac\right) \qquad\mbox, x, \leq, a, \mbox : \int xu\,dx = -\frac u^3 \qquad\mbox, x, \leq, a, \mbox : \int x^2u\,dx = -\frac u^3+\frac(xu+a^2\arcsin\frac) \qquad\mbox, x, \leq, a, \mbox : \int\frac = u-a\ln\left, \frac\ \qquad\mbox, x, \leq, a, \mbox : \int\frac = \arcsin\frac \qquad\mbox, x, \leq, a, \mbox : \int\frac = \frac\left(-xu+a^2\arcsin\frac\right) \qquad\mbox, x, \leq, a, \mbox : \int u\,dx = \frac\left(xu-\sgn x\,\operatorname\left, \frac\\right) \qquad\mbox, x, \ge, a, \mbox :\int \frac\,dx = -u \qquad\mbox, x, \leq, a, \mbox


Integrals involving ''R'' =

Assume (''ax''2 + ''bx'' + ''c'') cannot be reduced to the following expression (''px'' + ''q'')2 for some ''p'' and ''q''. : \int\frac = \frac\ln\left, 2\sqrtR+2ax+b\ \qquad \mboxa>0\mbox : \int\frac = \frac\,\operatorname\frac \qquad \mboxa>0\mbox4ac-b^2>0\mbox : \int\frac = \frac\ln, 2ax+b, \quad \mboxa>0\mbox4ac-b^2=0\mbox : \int\frac = -\frac\arcsin\frac \qquad \mboxa<0\mbox4ac-b^2<0\mbox\left, 2ax+b\<\sqrt\mbox : \int\frac = \frac : \int\frac = \frac\left(\frac+\frac\right) : \int\frac = \frac\left(\frac+4a(n-1)\int\frac\right) : \int\frac\,dx = \frac-\frac\int\frac : \int\frac\,dx = -\frac : \int\frac\,dx = -\frac-\frac\int\frac : \int\frac = -\frac\ln \left, \frac\, ~ c > 0 : \int\frac = -\frac\operatorname\left(\frac\right), ~ c < 0 : \int\frac = \frac\operatorname\left(\frac\right), ~ c < 0, b^2-4ac>0 : \int\frac = -\frac\left(\sqrt\right), ~ c = 0 : \int\frac\,dx = \fracR+\frac\int\frac : \int \frac = -\frac-\frac \int \frac : \int R\,dx = \frac R + \frac \int \frac : \int x R\,dx = \frac-\frac R - \frac \int \frac : \int x^ R\,dx = \fracR^3+\frac \int R\,dx : \int \frac\,dx = R + \frac \int \frac+c \int \frac : \int \frac\,dx = -\frac+a \int \frac+ \frac \int \frac : \int \frac = \frac+ \frac \int \frac


Integrals involving ''S'' =

: \int S\,dx = \frac : \int \frac = \frac : \int \frac = \begin -\dfrac \operatorname\left( \dfrac\right) & \mboxb > 0, \quad a x > 0\mbox \\ -\dfrac \operatorname\left( \dfrac\right) & \mboxb > 0, \quad a x < 0\mbox \\ \dfrac \arctan\left( \dfrac\right) & \mboxb < 0\mbox \\ \end : \int\frac\,dx = \begin 2 \left( S - \sqrt\,\operatorname\left( \dfrac\right)\right) & \mboxb > 0, \quad a x > 0\mbox \\ 2 \left( S - \sqrt\,\operatorname\left( \dfrac\right)\right) & \mboxb > 0, \quad a x < 0\mbox \\ 2 \left( S - \sqrt \arctan\left( \dfrac\right)\right) & \mboxb < 0\mbox \\ \end : \int \frac\,dx = \frac \left( x^ S - b n \int \frac\,dx\right) : \int x^ S\,dx = \frac \left(x^ S^ - n b \int x^ S\,dx\right) : \int \frac\,dx = -\frac \left( \frac + \left( n - \frac\right) a \int \frac\right)


References

* * Milton Abramowitz and Irene A. Stegun, eds., '' Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables'' 1972, Dover: New York. ''(Se
chapter 3
)'' * (Several previous editions as well.) {{Lists of integrals Irrational functions