HOME

TheInfoList



OR:

In the
mathematical Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
field of
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
a Liouville surface is a type of
surface A surface, as the term is most generally used, is the outermost or uppermost layer of a physical object or space. It is the portion or region of the object that can first be perceived by an observer using the senses of sight and touch, and is t ...
which in
local coordinates Local coordinates are the ones used in a ''local coordinate system'' or a ''local coordinate space''. Simple examples: * Houses. In order to work in a house construction, the measurements are referred to a control arbitrary point that will allow ...
may be written as a
graph Graph may refer to: Mathematics *Graph (discrete mathematics), a structure made of vertices and edges **Graph theory, the study of such graphs and their properties *Graph (topology), a topological space resembling a graph in the sense of discre ...
in R3 :z=f(x,y) such that the
first fundamental form In differential geometry, the first fundamental form is the inner product on the tangent space of a surface in three-dimensional Euclidean space which is induced canonically from the dot product of . It permits the calculation of curvature and me ...
is of the form :ds^2 = \big(f_1(x) + f_2(y)\big)\left(dx^2+dy^2\right).\, Sometimes a
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathema ...
of this form is called a Liouville metric. Every
surface of revolution A surface of revolution is a surface in Euclidean space created by rotating a curve (the generatrix) around an axis of rotation. Examples of surfaces of revolution generated by a straight line are cylindrical and conical surfaces depending on ...
is a Liouville surface.


References

* (Translated from the Russian by R. Silverman.) * {{differential-geometry-stub Surfaces