Linear Prediction Coding
   HOME

TheInfoList



OR:

In mathematics, the term ''linear'' is used in two distinct senses for two different properties: * linearity of a '' function'' (or '' mapping''); * linearity of a ''
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
''. An example of a linear function is the function defined by f(x)=(ax,bx) that maps the real line to a line in the
Euclidean plane In mathematics, a Euclidean plane is a Euclidean space of Two-dimensional space, dimension two, denoted \textbf^2 or \mathbb^2. It is a geometric space in which two real numbers are required to determine the position (geometry), position of eac ...
R2 that passes through the origin. An example of a linear polynomial in the variables X, Y and Z is aX+bY+cZ+d. Linearity of a mapping is closely related to '' proportionality''. Examples in
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
include the linear relationship of
voltage Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
and current in an
electrical conductor In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. The flow of negatively c ...
(
Ohm's law Ohm's law states that the electric current through a Electrical conductor, conductor between two Node (circuits), points is directly Proportionality (mathematics), proportional to the voltage across the two points. Introducing the constant of ...
), and the relationship of
mass Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physi ...
and
weight In science and engineering, the weight of an object is a quantity associated with the gravitational force exerted on the object by other objects in its environment, although there is some variation and debate as to the exact definition. Some sta ...
. By contrast, more complicated relationships, such as between
velocity Velocity is a measurement of speed in a certain direction of motion. It is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of physical objects. Velocity is a vector (geometry), vector Physical q ...
and
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
, are '' nonlinear''. Generalized for functions in more than one
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coo ...
, linearity means the property of a function of being compatible with
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
and scaling, also known as the
superposition principle The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So th ...
. Linearity of a polynomial means that its degree is less than two. The use of the term for polynomials stems from the fact that the graph of a polynomial in one variable is a straight line. In the term "
linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
", the word refers to the linearity of the polynomials involved. Because a function such as f(x)=ax+b is defined by a linear polynomial in its argument, it is sometimes also referred to as being a "linear function", and the relationship between the argument and the function value may be referred to as a "linear relationship". This is potentially confusing, but usually the intended meaning will be clear from the context. The word linear comes from
Latin Latin ( or ) is a classical language belonging to the Italic languages, Italic branch of the Indo-European languages. Latin was originally spoken by the Latins (Italic tribe), Latins in Latium (now known as Lazio), the lower Tiber area aroun ...
''linearis'', "pertaining to or resembling a line".


In mathematics


Linear maps

In mathematics, a
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
or
linear function In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
''f''(''x'') is a function that satisfies the two properties: * Additivity: . *
Homogeneity Homogeneity and heterogeneity are concepts relating to the Uniformity (chemistry), uniformity of a Chemical substance, substance, process or image. A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, ...
of degree 1: for all α. These properties are known as the
superposition principle The superposition principle, also known as superposition property, states that, for all linear systems, the net response caused by two or more stimuli is the sum of the responses that would have been caused by each stimulus individually. So th ...
. In this definition, ''x'' is not necessarily a
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
, but can in general be an element of any
vector space In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
. A more special definition of
linear function In mathematics, the term linear function refers to two distinct but related notions: * In calculus and related areas, a linear function is a function whose graph is a straight line, that is, a polynomial function of degree zero or one. For di ...
, not coinciding with the definition of linear map, is used in elementary mathematics (see below). Additivity alone implies homogeneity for
rational Rationality is the quality of being guided by or based on reason. In this regard, a person acts rationally if they have a good reason for what they do, or a belief is rational if it is based on strong evidence. This quality can apply to an ...
α, since f(x+x)=f(x)+f(x) implies f(nx)=n f(x) for any
natural number In mathematics, the natural numbers are the numbers 0, 1, 2, 3, and so on, possibly excluding 0. Some start counting with 0, defining the natural numbers as the non-negative integers , while others start with 1, defining them as the positive in ...
''n'' by
mathematical induction Mathematical induction is a method for mathematical proof, proving that a statement P(n) is true for every natural number n, that is, that the infinitely many cases P(0), P(1), P(2), P(3), \dots  all hold. This is done by first proving a ...
, and then n f(x) = f(nx)=f(m\tfracx)= m f(\tfracx) implies f(\tfracx) = \tfrac f(x). The
density Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
of the rational numbers in the reals implies that any additive
continuous function In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as '' discontinuities''. More preci ...
is homogeneous for any real number α, and is therefore linear. The concept of linearity can be extended to linear operators. Important examples of linear operators include the
derivative In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is t ...
considered as a
differential operator In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and retur ...
, and other operators constructed from it, such as
del Del, or nabla, is an operator used in mathematics (particularly in vector calculus) as a vector differential operator, usually represented by the nabla symbol ∇. When applied to a function defined on a one-dimensional domain, it denotes ...
and the
Laplacian In mathematics, the Laplace operator or Laplacian is a differential operator given by the divergence of the gradient of a scalar function on Euclidean space. It is usually denoted by the symbols \nabla\cdot\nabla, \nabla^2 (where \nabla is th ...
. When a differential equation can be expressed in linear form, it can generally be solved by breaking the equation up into smaller pieces, solving each of those pieces, and summing the solutions.


Linear polynomials

In a different usage to the above definition, a
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
of degree 1 is said to be linear, because the
graph of a function In mathematics, the graph of a function f is the set of ordered pairs (x, y), where f(x) = y. In the common case where x and f(x) are real numbers, these pairs are Cartesian coordinates of points in a plane (geometry), plane and often form a P ...
of that form is a straight line. Over the reals, a simple example of a
linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
is given by y = m x + b, where ''m'' is often called the
slope In mathematics, the slope or gradient of a Line (mathematics), line is a number that describes the direction (geometry), direction of the line on a plane (geometry), plane. Often denoted by the letter ''m'', slope is calculated as the ratio of t ...
or
gradient In vector calculus, the gradient of a scalar-valued differentiable function f of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p gives the direction and the rate of fastest increase. The g ...
, and ''b'' the ''y''-intercept, which gives the point of intersection between the graph of the function and the ''y'' axis. Note that this usage of the term ''linear'' is not the same as in the section above, because linear polynomials over the real numbers do not in general satisfy either additivity or homogeneity. In fact, they do so
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
the constant term ''b'' in the example equals 0. If , the function is called an affine function (see in greater generality
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, '' affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More general ...
).
Linear algebra Linear algebra is the branch of mathematics concerning linear equations such as :a_1x_1+\cdots +a_nx_n=b, linear maps such as :(x_1, \ldots, x_n) \mapsto a_1x_1+\cdots +a_nx_n, and their representations in vector spaces and through matrix (mathemat ...
is the branch of mathematics concerned with systems of linear equations.


Boolean functions

In
Boolean algebra In mathematics and mathematical logic, Boolean algebra is a branch of algebra. It differs from elementary algebra in two ways. First, the values of the variable (mathematics), variables are the truth values ''true'' and ''false'', usually denot ...
, a linear function is a function f for which there exist a_0, a_1, \ldots, a_n \in \ such that :f(b_1, \ldots, b_n) = a_0 \oplus (a_1 \land b_1) \oplus \cdots \oplus (a_n \land b_n), where b_1, \ldots, b_n \in \. Note that if a_0 = 1, the above function is considered affine in linear algebra (i.e. not linear). A Boolean function is linear if one of the following holds for the function's
truth table A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arg ...
: # In every row in which the truth value of the function is T, there are an odd number of Ts assigned to the arguments, and in every row in which the function is F there is an even number of Ts assigned to arguments. Specifically, , and these functions correspond to
linear map In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that p ...
s over the Boolean vector space. # In every row in which the value of the function is T, there is an even number of Ts assigned to the arguments of the function; and in every row in which the
truth value In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values ('' true'' or '' false''). Truth values are used in ...
of the function is F, there are an odd number of Ts assigned to arguments. In this case, . Another way to express this is that each variable always makes a difference in the
truth value In logic and mathematics, a truth value, sometimes called a logical value, is a value indicating the relation of a proposition to truth, which in classical logic has only two possible values ('' true'' or '' false''). Truth values are used in ...
of the operation or it never makes a difference.
Negation In logic, negation, also called the logical not or logical complement, is an operation (mathematics), operation that takes a Proposition (mathematics), proposition P to another proposition "not P", written \neg P, \mathord P, P^\prime or \over ...
,
Logical biconditional In logic and mathematics, the logical biconditional, also known as material biconditional or equivalence or bidirectional implication or biimplication or bientailment, is the logical connective used to conjoin two statements P and Q to form th ...
,
exclusive or Exclusive or, exclusive disjunction, exclusive alternation, logical non-equivalence, or logical inequality is a logical operator whose negation is the logical biconditional. With two inputs, XOR is true if and only if the inputs differ (on ...
, tautology, and
contradiction In traditional logic, a contradiction involves a proposition conflicting either with itself or established fact. It is often used as a tool to detect disingenuous beliefs and bias. Illustrating a general tendency in applied logic, Aristotle's ...
are linear functions.


Physics

In
physics Physics is the scientific study of matter, its Elementary particle, fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge whi ...
, ''linearity'' is a property of the differential equations governing many systems; for instance, the Maxwell equations or the diffusion equation. Linearity of a homogeneous differential equation means that if two functions ''f'' and ''g'' are solutions of the equation, then any
linear combination In mathematics, a linear combination or superposition is an Expression (mathematics), expression constructed from a Set (mathematics), set of terms by multiplying each term by a constant and adding the results (e.g. a linear combination of ''x'' a ...
is, too. In instrumentation, linearity means that a given change in an input variable gives the same change in the output of the measurement apparatus: this is highly desirable in scientific work. In general, instruments are close to linear over a certain range, and most useful within that range. In contrast, human senses are highly nonlinear: for instance, the brain completely ignores incoming light unless it exceeds a certain absolute threshold number of photons.
Linear motion Linear motion, also called rectilinear motion, is one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: uniform linear motion, with ...
traces a straight line trajectory.


Electronics

In
electronics Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other Electric charge, electrically charged particles. It is a subfield ...
, the linear operating region of a device, for example a
transistor A transistor is a semiconductor device used to Electronic amplifier, amplify or electronic switch, switch electrical signals and electric power, power. It is one of the basic building blocks of modern electronics. It is composed of semicondu ...
, is where an output
dependent variable A variable is considered dependent if it depends on (or is hypothesized to depend on) an independent variable. Dependent variables are studied under the supposition or demand that they depend, by some law or rule (e.g., by a mathematical functio ...
(such as the transistor collector current) is directly proportional to an input dependent variable (such as the base current). This ensures that an analog output is an accurate representation of an input, typically with higher amplitude (amplified). A typical example of linear equipment is a
high fidelity High fidelity (hi-fi or, rarely, HiFi) is the high-quality reproduction of sound. It is popular with audiophiles and home audio enthusiasts. Ideally, high-fidelity equipment has inaudible noise and distortion, and a flat (neutral, uncolored) ...
audio amplifier An audio power amplifier (or power amp) electronic amplifier, amplifies low-power electronic audio signals, such as the signal from a radio receiver or an electric guitar pickup (music technology), pickup, to a level that is high enough for dr ...
, which must amplify a signal without changing its waveform. Others are linear filters, and linear amplifiers in general. In most
scientific Science is a systematic discipline that builds and organises knowledge in the form of testable hypotheses and predictions about the universe. Modern science is typically divided into twoor threemajor branches: the natural sciences, which stu ...
and
technological Technology is the application of conceptual knowledge to achieve practical goals, especially in a reproducible way. The word ''technology'' can also mean the products resulting from such efforts, including both tangible tools such as ute ...
, as distinct from mathematical, applications, something may be described as linear if the characteristic is approximately but not exactly a straight line; and linearity may be valid only within a certain operating region—for example, a high-fidelity amplifier may distort a small signal, but sufficiently little to be acceptable (acceptable but imperfect linearity); and may distort very badly if the input exceeds a certain value.


Integral linearity

For an electronic device (or other physical device) that converts a quantity to another quantity, Bertram S. Kolts writes:
There are three basic definitions for integral linearity in common use: independent linearity, zero-based linearity, and terminal, or end-point, linearity. In each case, linearity defines how well the device's actual performance across a specified operating range approximates a straight line. Linearity is usually measured in terms of a deviation, or non-linearity, from an ideal straight line and it is typically expressed in terms of percent of full scale, or in ppm (parts per million) of full scale. Typically, the straight line is obtained by performing a least-squares fit of the data. The three definitions vary in the manner in which the straight line is positioned relative to the actual device's performance. Also, all three of these definitions ignore any gain, or offset errors that may be present in the actual device's performance characteristics.


See also

*
Linear actuator A linear actuator is an actuator that creates linear motion (i.e., in a straight line), in contrast to the circular motion of a conventional electric motor. Linear actuators are used in machine tools and industrial machinery, in computer perip ...
* Linear element * Linear foot *
Linear system In systems theory, a linear system is a mathematical model of a system based on the use of a linear operator. Linear systems typically exhibit features and properties that are much simpler than the nonlinear case. As a mathematical abstractio ...
*
Linear programming Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear function#As a polynomia ...
*
Linear differential equation In mathematics, a linear differential equation is a differential equation that is linear equation, linear in the unknown function and its derivatives, so it can be written in the form a_0(x)y + a_1(x)y' + a_2(x)y'' \cdots + a_n(x)y^ = b(x) wher ...
* Bilinear * Multilinear * Linear motor *
Linear interpolation In mathematics, linear interpolation is a method of curve fitting using linear polynomials to construct new data points within the range of a discrete set of known data points. Linear interpolation between two known points If the two known po ...


References


External links

*{{wiktionary-inline Physical phenomena Broad-concept articles