HOME

TheInfoList



OR:

In
algebra Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
,
linear equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
s and
systems of linear equations In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. For example, : \begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of three equations in ...
over a field are widely studied. "Over a field" means that the
coefficient In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s of the
equation In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for ...
s and the solutions that one is looking for belong to a given field, commonly the real or the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. This article is devoted to the same problems where "field" is replaced by "
commutative ring In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
", or "typically
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite leng ...
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
". In the case of a single equation, the problem splits in two parts. First, the ideal membership problem, which consists, given a non-homogeneous equation :a_1x_1 + \cdots + a_kx_k=b with a_1, \ldots, a_k and in a given
ring (The) Ring(s) may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell Arts, entertainment, and media Film and TV * ''The Ring'' (franchise), a ...
, to decide if it has a solution with x_1, \ldots, x_k in , and, if any, to provide one. This amounts to decide if belongs to the ideal generated by the . The simplest instance of this problem is, for and , to decide if is a unit in . The syzygy problem consists, given elements a_1, \ldots, a_k in , to provide a system of generators of the module of the syzygies of (a_1, \ldots, a_k), that is a system of generators of the
submodule In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since t ...
of those elements (x_1, \ldots, x_k) in that are solutions of the homogeneous equation :a_1x_1 + \cdots + a_kx_k=0. The simplest case, when amounts to find a system of generators of the annihilator of . Given a solution of the ideal membership problem, one obtains all the solutions by adding to it the elements of the module of syzygies. In other words, all the solutions are provided by the solution of these two partial problems. In the case of several equations, the same decomposition into subproblems occurs. The first problem becomes the submodule membership problem. The second one is also called the syzygy problem. A ring such that there are
algorithm In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
s for the arithmetic operations (addition, subtraction, multiplication) and for the above problems may be called a computable ring, or effective ring. One may also say that linear algebra on the ring is effective. The article considers the main rings for which linear algebra is effective.


Generalities

To be able to solve the syzygy problem, it is necessary that the module of syzygies is finitely generated, because it is impossible to output an infinite list. Therefore, the problems considered here make sense only for a
Noetherian ring In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
, or at least a coherent ring. In fact, this article is restricted to Noetherian
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
s because of the following result. :''Given a Noetherian integral domain, if there are algorithms to solve the ideal membership problem and the syzygies problem for a single equation, then one may deduce from them algorithms for the similar problems concerning systems of equations.'' This theorem is useful to prove the existence of algorithms. However, in practice, the algorithms for the systems are designed directly. A field is an effective ring as soon one has algorithms for addition, subtraction, multiplication, and computation of
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
s. In fact, solving the submodule membership problem is what is commonly called ''solving the system'', and solving the syzygy problem is the computation of the
null space In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. That is, given a linear ...
of the
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
of a
system of linear equations In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variable (math), variables. For example, : \begin 3x+2y-z=1\\ 2x-2y+4z=-2\\ -x+\fracy-z=0 \end is a system of th ...
. The basic algorithm for both problems is
Gaussian elimination In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can a ...
.


Properties of effective rings

Let be an effective commutative ring. * There is an algorithm for testing if an element is a
zero divisor In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right ze ...
: this amounts to solving the linear equation . * There is an algorithm for testing if an element is a unit, and if it is, computing its inverse: this amounts to solving the linear equation . * Given an ideal generated by , ** there is an algorithm for testing if two elements of have the same image in : testing the equality of the images of and amounts to solving the equation ; ** linear algebra is effective over : for solving a linear system over , it suffices to write it over and to add to one side of the th equation (for ), where the are new unknowns. * Linear algebra is effective on the
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...
R _1, \ldots, x_n/math>
if and only if In logic and related fields such as mathematics and philosophy, "if and only if" (often shortened as "iff") is paraphrased by the biconditional, a logical connective between statements. The biconditional is true in two cases, where either bo ...
one has an algorithm that computes an upper bound of the degree of the
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
s that may occur when solving linear systems of equations: if one has solving algorithms, their outputs give the degrees. Conversely, if one knows an upper bound of the degrees occurring in a solution, one may write the unknown polynomials as polynomials with unknown coefficients. Then, as two polynomials are equal if and only if their coefficients are equal, the equations of the problem become linear equations in the coefficients, that can be solved over an effective ring.


Over the integers or a principal ideal domain

There are algorithms to solve all the problems addressed in this article over the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s. In other words, ''linear algebra is effective over the integers''; see Linear Diophantine system for details. More generally, linear algebra is effective on a
principal ideal domain In mathematics, a principal ideal domain, or PID, is an integral domain (that is, a non-zero commutative ring without nonzero zero divisors) in which every ideal is principal (that is, is formed by the multiples of a single element). Some author ...
if there are algorithms for addition, subtraction and multiplication, and * Solving equations of the form , that is, testing whether is a
divisor In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a '' multiple'' of m. An integer n is divisible or evenly divisibl ...
of , and, if this is the case, computing the quotient , * Computing
Bézout's identity In mathematics, Bézout's identity (also called Bézout's lemma), named after Étienne Bézout who proved it for polynomials, is the following theorem: Here the greatest common divisor of and is taken to be . The integers and are called B� ...
, that is, given and , computing and such that is a
greatest common divisor In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers , , the greatest co ...
of and . It is useful to extend to the general case the notion of a
unimodular matrix In mathematics, a unimodular matrix ''M'' is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers: there is an integer matrix ''N'' that is its inverse (these are equi ...
by calling ''unimodular'' a
square matrix In mathematics, a square matrix is a Matrix (mathematics), matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Squ ...
whose
determinant In mathematics, the determinant is a Scalar (mathematics), scalar-valued function (mathematics), function of the entries of a square matrix. The determinant of a matrix is commonly denoted , , or . Its value characterizes some properties of the ...
is a unit. This means that the determinant is invertible and implies that the unimodular matrices are exactly the
invertible matrices In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by a ...
such all entries of the inverse matrix belong to the domain. The above two algorithms imply that given and in the principal ideal domain, there is an algorithm computing a unimodular matrix : \begin s&t\\u&v \end such that : \begin s&t\\u&v \end \begin a\\b \end = \begin\gcd(a,b)\\0 \end. (This algorithm is obtained by taking for and the coefficients of Bézout's identity, and for and the quotient of and by ; this choice implies that the determinant of the square matrix is .) Having such an algorithm, the
Smith normal form In mathematics, the Smith normal form (sometimes abbreviated SNF) is a normal form that can be defined for any matrix (not necessarily square) with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can ...
of a matrix may be computed exactly as in the integer case, and this suffices to apply the described in Linear Diophantine system for getting an algorithm for solving every linear system. The main case where this is commonly used is the case of linear systems over the ring of
univariate polynomial In mathematics, a polynomial is a mathematical expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication and exponentiation to nonnegative integer ...
s over a field. In this case, the
extended Euclidean algorithm In arithmetic and computer programming, the extended Euclidean algorithm is an extension to the Euclidean algorithm, and computes, in addition to the greatest common divisor (gcd) of integers ''a'' and ''b'', also the coefficients of Bézout's id ...
may be used for computing the above unimodular matrix; see for details.


Over polynomials rings over a field

Linear algebra is effective on a polynomial ring k _1, \ldots, x_n/math> over a field . This has been first proved in 1926 by
Grete Hermann Grete Hermann (2 March 1901 – 15 April 1984) was a German mathematician and philosopher noted for her work in mathematics, physics, philosophy and education. She is noted for her early philosophical work on the foundations of quantum mechanics ...
.. English translation in Communications in Computer Algebra 32/3 (1998): 8–30. The algorithms resulting from Hermann's results are only of historical interest, as their
computational complexity In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations ...
is too high for allowing effective computer computation. Proofs that linear algebra is effective on polynomial rings and computer implementations are presently all based on Gröbner basis theory.


References


External links

* * {{cite journal , last=Aschenbrenner , first=Matthias , authorlink= Matthias Aschenbrenner , date=2004 , title=Ideal membership in polynomial rings over the integers , url= https://www.ams.org/journals/jams/2004-17-02/S0894-0347-04-00451-5/S0894-0347-04-00451-5.pdf, journal=J. Amer. Math. Soc., publisher= AMS , volume=17 , issue=2 , pages=407–441 , doi=10.1090/S0894-0347-04-00451-5 , s2cid=8176473 , access-date=23 October 2013, doi-access=free Commutative algebra Linear algebra Equations