In
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
,
linear equation
In mathematics, a linear equation is an equation that may be put in the form
a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coeffici ...
s and
systems of linear equations
In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables.
For example,
: \begin
3x+2y-z=1\\
2x-2y+4z=-2\\
-x+\fracy-z=0
\end
is a system of three equations in ...
over a
field are widely studied. "Over a field" means that the
coefficient
In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s of the
equation
In mathematics, an equation is a mathematical formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for ...
s and the solutions that one is looking for belong to a given field, commonly the
real or the
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s. This article is devoted to the same problems where "field" is replaced by "
commutative ring
In mathematics, a commutative ring is a Ring (mathematics), ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring prope ...
", or "typically
Noetherian In mathematics, the adjective Noetherian is used to describe objects that satisfy an ascending or descending chain condition on certain kinds of subobjects, meaning that certain ascending or descending sequences of subobjects must have finite leng ...
integral domain
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
".
In the case of a single equation, the problem splits in two parts. First, the ideal membership problem, which consists, given a non-homogeneous equation
:
with
and in a given
ring
(The) Ring(s) may refer to:
* Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry
* To make a sound with a bell, and the sound made by a bell
Arts, entertainment, and media Film and TV
* ''The Ring'' (franchise), a ...
, to decide if it has a solution with
in , and, if any, to provide one. This amounts to decide if belongs to the
ideal generated by the . The simplest instance of this problem is, for and , to decide if is a
unit in .
The syzygy problem consists, given elements
in , to provide a system of generators of the
module of the
syzygies of
that is a system of generators of the
submodule
In mathematics, a module is a generalization of the notion of vector space in which the field of scalars is replaced by a (not necessarily commutative) ring. The concept of a ''module'' also generalizes the notion of an abelian group, since t ...
of those elements
in that are solutions of the homogeneous equation
:
The simplest case, when amounts to find a system of generators of the
annihilator of .
Given a solution of the ideal membership problem, one obtains all the solutions by adding to it the elements of the module of syzygies. In other words, all the solutions are provided by the solution of these two partial problems.
In the case of several equations, the same decomposition into subproblems occurs. The first problem becomes the submodule membership problem. The second one is also called the syzygy problem.
A ring such that there are
algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algo ...
s for the arithmetic operations (addition, subtraction, multiplication) and for the above problems may be called a computable ring, or effective ring. One may also say that linear algebra on the ring is effective.
The article considers the main rings for which linear algebra is effective.
Generalities
To be able to solve the syzygy problem, it is necessary that the module of syzygies is
finitely generated, because it is impossible to output an infinite list. Therefore, the problems considered here make sense only for a
Noetherian ring
In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals. If the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noethe ...
, or at least a
coherent ring. In fact, this article is restricted to Noetherian
integral domain
In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
s because of the following result.
:''Given a Noetherian integral domain, if there are algorithms to solve the ideal membership problem and the syzygies problem for a single equation, then one may deduce from them algorithms for the similar problems concerning systems of equations.''
This theorem is useful to prove the existence of algorithms. However, in practice, the algorithms for the systems are designed directly.
A
field is an effective ring as soon one has algorithms for addition, subtraction, multiplication, and computation of
multiplicative inverse
In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
s. In fact, solving the submodule membership problem is what is commonly called ''solving the system'', and solving the syzygy problem is the computation of the
null space
In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the part of the domain which is mapped to the zero vector of the co-domain; the kernel is always a linear subspace of the domain. That is, given a linear ...
of the
matrix
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the m ...
of a
system of linear equations
In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variable (math), variables.
For example,
: \begin
3x+2y-z=1\\
2x-2y+4z=-2\\
-x+\fracy-z=0
\end
is a system of th ...
. The basic algorithm for both problems is
Gaussian elimination
In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients. This method can a ...
.
Properties of effective rings
Let be an effective commutative ring.
* There is an algorithm for testing if an element is a
zero divisor
In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right ze ...
: this amounts to solving the linear equation .
* There is an algorithm for testing if an element is a
unit, and if it is, computing its inverse: this amounts to solving the linear equation .
* Given an ideal generated by ,
** there is an algorithm for testing if two elements of have the same image in : testing the equality of the images of and amounts to solving the equation ;
** linear algebra is effective over : for solving a linear system over , it suffices to write it over and to add to one side of the th equation (for ), where the are new unknowns.
* Linear algebra is effective on the
polynomial ring
In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring formed from the set of polynomials in one or more indeterminates (traditionally also called variables) with coefficients in another ring, ...