HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a line is an infinitely long object with no width, depth, or curvature. Thus, lines are one-dimensional objects, though they may exist in
two 2 (two) is a number, numeral and digit. It is the natural number following 1 and preceding 3. It is the smallest and only even prime number. Because it forms the basis of a duality, it has religious and spiritual significance in many cultur ...
,
three 3 is a number, numeral, and glyph. 3, three, or III may also refer to: * AD 3, the third year of the AD era * 3 BC, the third year before the AD era * March, the third month Books * '' Three of Them'' (Russian: ', literally, "three"), a 1901 ...
, or higher
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
spaces. The word ''line'' may also refer to a
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
in everyday life, which has two points to denote its ends. Lines can be referred by two points that lay on it (e.g., \overleftrightarrow) or by a single letter (e.g., \ell).
Euclid Euclid (; grc-gre, Wikt:Εὐκλείδης, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Euclid's Elements, Elements'' trea ...
described a line as "breadthless length" which "lies evenly with respect to the points on itself"; he introduced several
postulate An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s as basic unprovable properties from which he constructed all of geometry, which is now called
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry: the ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small ...
to avoid confusion with other geometries which have been introduced since the end of the 19th century (such as non-Euclidean, projective and
affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of '' parallel lines'' is one of the main properties that is ...
). In modern mathematics, given the multitude of geometries, the concept of a line is closely tied to the way the geometry is described. For instance, in
analytic geometry In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineerin ...
, a line in the plane is often defined as the set of points whose coordinates satisfy a given linear equation, but in a more abstract setting, such as
incidence geometry In mathematics, incidence geometry is the study of incidence structures. A geometric structure such as the Euclidean plane is a complicated object that involves concepts such as length, angles, continuity, betweenness, and incidence. An ''incide ...
, a line may be an independent object, distinct from the set of points which lie on it. When a geometry is described by a set of
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s, the notion of a line is usually left undefined (a so-called primitive object). The properties of lines are then determined by the axioms which refer to them. One advantage to this approach is the flexibility it gives to users of the geometry. Thus in
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, a line may be interpreted as a
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
(shortest path between points), while in some projective geometries, a line is a 2-dimensional vector space (all linear combinations of two independent vectors). This flexibility also extends beyond mathematics and, for example, permits physicists to think of the path of a light ray as being a line.


Properties

When geometry was first formalised by
Euclid Euclid (; grc-gre, Wikt:Εὐκλείδης, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the ''Euclid's Elements, Elements'' trea ...
in the '' Elements'', he defined a general line (now called a ''
curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
'') to be "breadthless length" with a straight line being a line "which lies evenly with the points on itself". These definitions serve little purpose, since they use terms which are not by themselves defined. In fact, Euclid himself did not use these definitions in this work, and probably included them just to make it clear to the reader what was being discussed. In modern geometry, a line is simply taken as an undefined object with properties given by
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s, but is sometimes defined as a set of points obeying a linear relationship when some other fundamental concept is left undefined. In an
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
atic formulation of Euclidean geometry, such as that of
Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many ...
(Euclid's original axioms contained various flaws which have been corrected by modern mathematicians), a line is stated to have certain properties which relate it to other lines and points. For example, for any two distinct points, there is a unique line containing them, and any two distinct lines intersect in at most one point. In two
dimension In physics and mathematics, the dimension of a Space (mathematics), mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any Point (geometry), point within it. Thus, a Line (geometry), lin ...
s (i.e., the Euclidean
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
), two lines which do not intersect are called
parallel Parallel is a geometric term of location which may refer to: Computing * Parallel algorithm * Parallel computing * Parallel metaheuristic * Parallel (software), a UNIX utility for running programs in parallel * Parallel Sysplex, a cluster of ...
. In higher dimensions, two lines that do not intersect are parallel if they are contained in a
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
, or
skew Skew may refer to: In mathematics * Skew lines, neither parallel nor intersecting. * Skew normal distribution, a probability distribution * Skew field or division ring * Skew-Hermitian matrix * Skew lattice * Skew polygon, whose vertices do not ...
if they are not. On an
Euclidean plane In mathematics, the Euclidean plane is a Euclidean space of dimension two. That is, a geometric setting in which two real quantities are required to determine the position of each point ( element of the plane), which includes affine notions of ...
, a line can be represented as a boundary between two regions. Any collection of finitely many lines partitions the plane into
convex polygon In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a ...
s (possibly unbounded); this partition is known as an
arrangement of lines In music, an arrangement is a musical adaptation of an existing composition. Differences from the original composition may include reharmonization, melodic paraphrasing, orchestration, or formal development. Arranging differs from orchestr ...
.


In higher dimensions

In
three-dimensional space Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position (geometry), position of an element (i.e., Point (m ...
, a
first degree equation In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variable (mathematics), variables (or unknown (mathematics), unknowns), and b,a_1,\ldots,a_n are the coefficients, ...
in the variables ''x'', ''y'', and ''z'' defines a plane, so two such equations, provided the planes they give rise to are not parallel, define a line which is the intersection of the planes. More generally, in ''n''-dimensional space ''n''−1 first-degree equations in the ''n''
coordinate In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sign ...
variables define a line under suitable conditions. In more general
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
, R''n'' (and analogously in every other
affine space In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties relate ...
), the line ''L'' passing through two different points ''a'' and ''b'' (considered as vectors) is the subset L = \left\ The direction of the line is from ''a'' (''t'' = 0) to ''b'' (''t'' = 1), or in other words, in the direction of the vector ''b'' − ''a''. Different choices of ''a'' and ''b'' can yield the same line.


Collinear points

Three points are said to be ''collinear'' if they lie on the same line. Three points '' usually'' determine a
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
, but in the case of three collinear points this does ''not'' happen. In
affine coordinates In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
, in ''n''-dimensional space the points ''X'' = (''x''1, ''x''2, ..., ''x''''n''), ''Y'' = (''y''1, ''y''2, ..., ''y''''n''), and ''Z'' = (''z''1, ''z''2, ..., ''z''''n'') are collinear if the
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
\begin 1 & x_1 & x_2 & \cdots & x_n \\ 1 & y_1 & y_2 & \cdots & y_n \\ 1 & z_1 & z_2 & \cdots & z_n \end has a
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * ...
less than 3. In particular, for three points in the plane (''n'' = 2), the above matrix is square and the points are collinear if and only if its
determinant In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. It characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and ...
is zero. Equivalently for three points in a plane, the points are collinear if and only if the slope between one pair of points equals the slope between any other pair of points (in which case the slope between the remaining pair of points will equal the other slopes). By extension, ''k'' points in a plane are collinear if and only if any (''k''–1) pairs of points have the same pairwise slopes. In
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry: the ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small ...
, the
Euclidean distance In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefor ...
''d''(''a'',''b'') between two points ''a'' and ''b'' may be used to express the collinearity between three points by: :The points ''a'', ''b'' and ''c'' are collinear if and only if ''d''(''x'',''a'') = ''d''(''c'',''a'') and ''d''(''x'',''b'') = ''d''(''c'',''b'') implies ''x'' = ''c''. However, there are other notions of distance (such as the
Manhattan distance A taxicab geometry or a Manhattan geometry is a geometry whose usual distance function or Metric (mathematics), metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the absolute differences ...
) for which this property is not true. In the geometries where the concept of a line is a
primitive notion In mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an ...
, as may be the case in some synthetic geometries, other methods of determining collinearity are needed.


Types

In a sense, all lines in Euclidean geometry are equal, in that, without coordinates, one can not tell them apart from one another. However, lines may play special roles with respect to other objects in the geometry and be divided into types according to that relationship. For instance, with respect to a
conic In mathematics, a conic section, quadratic curve or conic is a curve obtained as the intersection of the surface of a cone with a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a specia ...
(a
circle A circle is a shape consisting of all points in a plane that are at a given distance from a given point, the centre. Equivalently, it is the curve traced out by a point that moves in a plane so that its distance from a given point is const ...
,
ellipse In mathematics, an ellipse is a plane curve surrounding two focus (geometry), focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special ty ...
,
parabola In mathematics, a parabola is a plane curve which is mirror-symmetrical and is approximately U-shaped. It fits several superficially different mathematical descriptions, which can all be proved to define exactly the same curves. One descript ...
, or
hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, cal ...
), lines can be: *
tangent line In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. More ...
s, which touch the conic at a single point; *
secant line Secant is a term in mathematics derived from the Latin ''secare'' ("to cut"). It may refer to: * a secant line, in geometry * the secant variety, in algebraic geometry * secant (trigonometry) (Latin: secans), the multiplicative inverse (or recipr ...
s, which intersect the conic at two points and pass through its interior;. * exterior lines, which do not meet the conic at any point of the Euclidean plane; or * a directrix, whose distance from a point helps to establish whether the point is on the conic. In the context of determining parallelism in Euclidean geometry, a transversal is a line that intersects two other lines that may or not be parallel to each other. For more general
algebraic curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane c ...
s, lines could also be: * ''i''-secant lines, meeting the curve in ''i'' points counted without multiplicity, or *
asymptote In analytic geometry, an asymptote () of a curve is a line such that the distance between the curve and the line approaches zero as one or both of the ''x'' or ''y'' coordinates tends to infinity. In projective geometry and related context ...
s, which a curve approaches arbitrarily closely without touching it. With respect to
triangles A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non-collinear ...
we have: * the
Euler line In geometry, the Euler line, named after Leonhard Euler (), is a line determined from any triangle that is not equilateral. It is a central line of the triangle, and it passes through several important points determined from the triangle, includ ...
, * the
Simson line In geometry, given a triangle and a point on its circumcircle, the three closest points to on lines , , and are collinear. The line through these points is the Simson line of , named for Robert Simson. The concept was first published, however ...
s, and * central lines. For a
convex Convex or convexity may refer to: Science and technology * Convex lens, in optics Mathematics * Convex set, containing the whole line segment that joins points ** Convex polygon, a polygon which encloses a convex set of points ** Convex polytop ...
quadrilateral In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, ...
with at most two parallel sides, the
Newton line In Euclidean geometry the Newton line is the line that connects the midpoints of the two diagonals in a convex quadrilateral with at most two parallel sides.Claudi Alsina, Roger B. Nelsen: ''Charming Proofs: A Journey Into Elegant Mathematics''. ...
is the line that connects the midpoints of the two
diagonal In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek δ ...
s. () For a
hexagon In geometry, a hexagon (from Greek , , meaning "six", and , , meaning "corner, angle") is a six-sided polygon. The total of the internal angles of any simple (non-self-intersecting) hexagon is 720°. Regular hexagon A '' regular hexagon'' has ...
with vertices lying on a conic we have the
Pascal line In projective geometry, Pascal's theorem (also known as the ''hexagrammum mysticum theorem'') states that if six arbitrary points are chosen on a conic (which may be an ellipse, parabola or hyperbola in an appropriate affine plane) and joined b ...
and, in the special case where the conic is a pair of lines, we have the Pappus line.
Parallel lines In geometry, parallel lines are coplanar straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. ''Parallel curves'' are curves that do not touch each other or int ...
are lines in the same plane that never cross.
Intersecting lines In geometry, an intersection is a point, line, or curve common to two or more objects (such as lines, curves, planes, and surfaces). The simplest case in Euclidean geometry is the line–line intersection between two distinct line (geometry), li ...
share a single point in common. Coincidental lines coincide with each other—every point that is on either one of them is also on the other. Perpendicular lines are lines that intersect at
right angle In geometry and trigonometry, a right angle is an angle of exactly 90 Degree (angle), degrees or radians corresponding to a quarter turn (geometry), turn. If a Line (mathematics)#Ray, ray is placed so that its endpoint is on a line and the ad ...
s. In
three-dimensional space Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position (geometry), position of an element (i.e., Point (m ...
,
skew lines In three-dimensional geometry, skew lines are two lines that do not intersect and are not parallel. A simple example of a pair of skew lines is the pair of lines through opposite edges of a regular tetrahedron. Two lines that both lie in the sa ...
are lines that are not in the same plane and thus do not intersect each other.


In axiomatic systems

The concept of line is often considered in geometry as a
primitive notion In mathematics, logic, philosophy, and formal systems, a primitive notion is a concept that is not defined in terms of previously-defined concepts. It is often motivated informally, usually by an appeal to intuition and everyday experience. In an ...
in axiomatic systems, meaning it is not being defined by other concepts. In those situations where a line is a defined concept, as in
coordinate geometry In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry. Analytic geometry is used in physics and engineerin ...
, some other fundamental ideas are taken as primitives. When the line concept is a primitive, the behaviour and properties of lines are dictated by the
axiom An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word (), meaning 'that which is thought worthy or f ...
s which they must satisfy. In a non-axiomatic or simplified axiomatic treatment of geometry, the concept of a primitive notion may be too abstract to be dealt with. In this circumstance, it is possible to provide a ''description'' or ''mental image'' of a primitive notion, to give a foundation to build the notion on which would formally be based on the (unstated) axioms. Descriptions of this type may be referred to, by some authors, as definitions in this informal style of presentation. These are not true definitions, and could not be used in formal proofs of statements. The "definition" of line in
Euclid's Elements The ''Elements'' ( grc, Στοιχεῖα ''Stoikheîa'') is a mathematical treatise consisting of 13 books attributed to the ancient Greek mathematician Euclid in Alexandria, Ptolemaic Egypt 300 BC. It is a collection of definitions, postulat ...
falls into this category. Even in the case where a specific geometry is being considered (for example,
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry: the ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small ...
), there is no generally accepted agreement among authors as to what an informal description of a line should be when the subject is not being treated formally.


Definition


Linear equation

Lines in a Cartesian plane or, more generally, in
affine coordinates In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related ...
, are characterized by linear equations. More precisely, every line L (including vertical lines) is the set of all points whose
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine the position of the points or other geometric elements on a manifold such as Euclidean space. The order of the coordinates is sig ...
(''x'', ''y'') satisfy a linear equation; that is, L = \, where ''a'', ''b'' and ''c'' are fixed
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
s (called coefficients) such that ''a'' and ''b'' are not both zero. Using this form, vertical lines correspond to equations with ''b'' = 0. One can further suppose either or , by dividing everything by if it is not zero. There are many variant ways to write the equation of a line which can all be converted from one to another by algebraic manipulation. The above form is sometimes called the ''standard form''. If the constant term is put on the left, the equation becomes ax + by - c = 0, and this is sometimes called the ''general form'' of the equation. However, this terminology is not universally accepted, and many authors do not distinguish these two forms. These forms are generally named by the type of information (data) about the line that is needed to write down the form. Some of the important data of a line is its slope,
x-intercept In mathematics, a zero (also sometimes called a root) of a real-, complex-, or generally vector-valued function f, is a member x of the domain of f such that f(x) ''vanishes'' at x; that is, the function f attains the value of 0 at x, or e ...
, known points on the line and y-intercept. The equation of the line passing through two different points P_0( x_0, y_0 ) and P_1(x_1, y_1) may be written as (y - y_0)(x_1 - x_0) = (y_1 - y_0)(x - x_0). If , this equation may be rewritten as y=(x-x_0)\,\frac+y_0 or y=x\,\frac+\frac\,.In
two dimensions In mathematics, a plane is a Euclidean ( flat), two-dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise as ...
, the equation for non-vertical lines is often given in the ''
slope-intercept form In mathematics, a linear equation is an equation that may be put in the form a_1x_1+\ldots+a_nx_n+b=0, where x_1,\ldots,x_n are the variables (or unknowns), and b,a_1,\ldots,a_n are the coefficients, which are often real numbers. The coefficien ...
'': y = mx + b where: * ''m'' is the
slope In mathematics, the slope or gradient of a line is a number that describes both the ''direction'' and the ''steepness'' of the line. Slope is often denoted by the letter ''m''; there is no clear answer to the question why the letter ''m'' is use ...
or
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
of the line. * ''b'' is the
y-intercept In analytic geometry, using the common convention that the horizontal axis represents a variable ''x'' and the vertical axis represents a variable ''y'', a ''y''-intercept or vertical intercept is a point where the graph of a function or relatio ...
of the line. * ''x'' is the independent variable of the function . The slope of the line through points A(x_a, y_a) and B(x_b, y_b), when x_a \neq x_b, is given by m = (y_b - y_a)/(x_b - x_a) and the equation of this line can be written y = m (x - x_a) + y_a.


Parametric equation

Parametric equations are also used to specify lines, particularly in those in
three dimensions Three-dimensional space (also: 3D space, 3-space or, rarely, tri-dimensional space) is a geometric setting in which three values (called ''parameters'') are required to determine the position of an element (i.e., point). This is the informa ...
or more because in more than two dimensions lines ''cannot'' be described by a single linear equation. In three dimensions lines are frequently described by parametric equations: \begin x &= x_0 + at \\ y &= y_0 + bt \\ z &= z_0 + ct \end where: * ''x'', ''y'', and ''z'' are all functions of the independent variable ''t'' which ranges over the real numbers. * (''x''0, ''y''0, ''z''0) is any point on the line. * ''a'', ''b'', and ''c'' are related to the slope of the line, such that the direction
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
(''a'', ''b'', ''c'') is parallel to the line. Parametric equations for lines in higher dimensions are similar in that they are based on the specification of one point on the line and a direction vector. As a note, lines in three dimensions may also be described as the simultaneous solutions of two linear equations a_1 x + b_1 y + c_1 z - d_1 = 0 a_2 x + b_2 y + c_2 z - d_2 = 0 such that (a_1,b_1,c_1) and (a_2,b_2,c_2) are not proportional (the relations a_1 = t a_2, b_1 = t b_2, c_1 = t c_2 imply t = 0). This follows since in three dimensions a single linear equation typically describes a
plane Plane(s) most often refers to: * Aero- or airplane, a powered, fixed-wing aircraft * Plane (geometry), a flat, 2-dimensional surface Plane or planes may also refer to: Biology * Plane (tree) or ''Platanus'', wetland native plant * ''Planes' ...
and a line is what is common to two distinct intersecting planes.


Hesse normal form

The ''normal form'' (also called the ''Hesse normal form'', after the German mathematician
Ludwig Otto Hesse Ludwig Otto Hesse (22 April 1811 – 4 August 1874) was a German mathematician. Hesse was born in Königsberg, Prussia, and died in Munich, Bavaria. He worked mainly on algebraic invariants, and geometry. The Hessian matrix, the Hesse norm ...
), is based on the ''
normal Normal(s) or The Normal(s) may refer to: Film and television * ''Normal'' (2003 film), starring Jessica Lange and Tom Wilkinson * ''Normal'' (2007 film), starring Carrie-Anne Moss, Kevin Zegers, Callum Keith Rennie, and Andrew Airlie * ''Norma ...
segment'' for a given line, which is defined to be the line segment drawn from the
origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
perpendicular to the line. This segment joins the origin with the closest point on the line to the origin. The normal form of the equation of a straight line on the plane is given by: x \cos \varphi + y \sin \varphi - p = 0 , where \varphi is the angle of inclination of the normal segment (the oriented angle from the unit vector of the -axis to this segment), and is the (positive) length of the normal segment. The normal form can be derived from the standard form ax + by = c by dividing all of the coefficients by \frac\sqrt. Unlike the slope-intercept and intercept forms, this form can represent any line but also requires only two finite parameters, \varphi and , to be specified. If , then \varphi is uniquely defined modulo . On the other hand, if the line is through the origin (), one drops the term to compute \sin\varphi and \cos\varphi, and it follows that \varphi is only defined modulo .


Other representations


Vectors

The vector equation of the line through points A and B is given by \mathbf = \mathbf + \lambda\, \mathbf (where λ is a
scalar Scalar may refer to: *Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers * Scalar (physics), a physical quantity that can be described by a single element of a number field such ...
). If a is vector OA and b is vector OB, then the equation of the line can be written: \mathbf = \mathbf + \lambda (\mathbf - \mathbf). A ray starting at point ''A'' is described by limiting λ. One ray is obtained if λ ≥ 0, and the opposite ray comes from λ ≤ 0.


Polar coordinates

In a
Cartesian plane A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
,
polar coordinates In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to th ...
are related to Cartesian coordinates by the parametric equations:x=r\cos\theta, \quad y=r\sin\theta. In polar coordinates, the equation of a line not passing through the
origin Origin(s) or The Origin may refer to: Arts, entertainment, and media Comics and manga * ''Origin'' (comics), a Wolverine comic book mini-series published by Marvel Comics in 2002 * ''The Origin'' (Buffy comic), a 1999 ''Buffy the Vampire Sl ...
—the point with coordinates —can be written r = \frac p , with and \varphi-\pi/2 < \theta < \varphi + \pi/2. Here, is the (positive) length of the
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
perpendicular to the line and delimited by the origin and the line, and \varphi is the (oriented) angle from the -axis to this segment. It may be useful to express the equation in terms of the angle \alpha=\varphi+\pi/2 between the -axis and the line. In this case, the equation becomes r=\frac p , with and 0 < \theta < \alpha + \pi. These equations can be derived from the normal form of the line equation by setting x = r \cos\theta, and y = r \sin\theta, and then applying the angle difference identity for sine or cosine. These equations can also be proven geometrically by applying right triangle definitions of sine and cosine to the
right triangle A right triangle (American English) or right-angled triangle ( British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right a ...
that has a point of the line and the origin as vertices, and the line and its perpendicular through the origin as sides. The previous forms do not apply for a line passing through the origin, but a simpler formula can be written: the polar coordinates (r, \theta) of the points of a line passing through the origin and making an angle of \alpha with the -axis, are the pairs (r, \theta) such that r\ge 0,\qquad \text \quad \theta=\alpha \quad\text\quad \theta=\alpha +\pi.


Projective geometry

In many models of
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
, the representation of a line rarely conforms to the notion of the "straight curve" as it is visualised in Euclidean geometry. In
elliptic geometry Elliptic geometry is an example of a geometry in which Euclid's parallel postulate does not hold. Instead, as in spherical geometry, there are no parallel lines since any two lines must intersect. However, unlike in spherical geometry, two lines ...
we see a typical example of this. In the spherical representation of elliptic geometry, lines are represented by
great circle In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point. Any arc of a great circle is a geodesic of the sphere, so that great circles in spherical geomet ...
s of a sphere with diametrically opposite points identified. In a different model of elliptic geometry, lines are represented by Euclidean planes passing through the origin. Even though these representations are visually distinct, they satisfy all the properties (such as, two points determining a unique line) that make them suitable representations for lines in this geometry. The "shortness" and "straightness" of a line, interpreted as the property that the
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
along the line between any two of its points is minimized (see
triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but ...
), can be generalized and leads to the concept of
geodesic In geometry, a geodesic () is a curve representing in some sense the shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a connection. ...
s in
metric space In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general settin ...
s.


Extensions


Ray

Given a line and any point ''A'' on it, we may consider ''A'' as decomposing this line into two parts. Each such part is called a ray and the point ''A'' is called its ''initial point''. It is also known as half-line, a one-dimensional half-space. The point A is considered to be a member of the ray. Intuitively, a ray consists of those points on a line passing through ''A'' and proceeding indefinitely, starting at ''A'', in one direction only along the line. However, in order to use this concept of a ray in proofs a more precise definition is required. Given distinct points ''A'' and ''B'', they determine a unique ray with initial point ''A''. As two points define a unique line, this ray consists of all the points between ''A'' and ''B'' (including ''A'' and ''B'') and all the points ''C'' on the line through ''A'' and ''B'' such that ''B'' is between ''A'' and ''C''. This is, at times, also expressed as the set of all points ''C'' on the line determined by ''A'' and ''B'' such that ''A'' is not between ''B'' and ''C''. A point ''D'', on the line determined by ''A'' and ''B'' but not in the ray with initial point ''A'' determined by ''B'', will determine another ray with initial point ''A''. With respect to the ''AB'' ray, the ''AD'' ray is called the ''opposite ray''. Thus, we would say that two different points, ''A'' and ''B'', define a line and a decomposition of this line into the
disjoint union In mathematics, a disjoint union (or discriminated union) of a family of sets (A_i : i\in I) is a set A, often denoted by \bigsqcup_ A_i, with an injection of each A_i into A, such that the images of these injections form a partition of A ( ...
of an open segment and two rays, ''BC'' and ''AD'' (the point ''D'' is not drawn in the diagram, but is to the left of ''A'' on the line ''AB''). These are not opposite rays since they have different initial points. In Euclidean geometry two rays with a common endpoint form an
angle In Euclidean geometry, an angle is the figure formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle. Angles formed by two ...
. The definition of a ray depends upon the notion of betweenness for points on a line. It follows that rays exist only for geometries for which this notion exists, typically
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry: the ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small ...
or
affine geometry In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting") the metric notions of distance and angle. As the notion of '' parallel lines'' is one of the main properties that is ...
over an
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. The basic example of an ordered field is the field of real numbers, and every Dedekind-complete ordered fiel ...
. On the other hand, rays do not exist in
projective geometry In mathematics, projective geometry is the study of geometric properties that are invariant with respect to projective transformations. This means that, compared to elementary Euclidean geometry, projective geometry has a different setting, ...
nor in a geometry over a non-ordered field, like the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s or any
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
.


Line segment

A
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
is a part of a line that is bounded by two distinct end points and contains every point on the line between its end points. Depending on how the line segment is defined, either of the two end points may or may not be part of the line segment. Two or more line segments may have some of the same relationships as lines, such as being parallel, intersecting, or skew, but unlike lines they may be none of these, if they are
coplanar In geometry, a set of points in space are coplanar if there exists a geometric plane that contains them all. For example, three points are always coplanar, and if the points are distinct and non-collinear, the plane they determine is unique. How ...
and either do not intersect or are
collinear In geometry, collinearity of a set of points is the property of their lying on a single line. A set of points with this property is said to be collinear (sometimes spelled as colinear). In greater generality, the term has been used for aligned ...
.


Number line

A point on number line corresponds to a
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
and vice versa. Usually,
integers An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
are evenly spaced on the line, with positive numbers are on the right, negative numbers on the left. As an extension to the concept, an
imaginary line In general, an imaginary line is usually any sort of geometric line that has only an abstract definition and does not physically exist. In fact, they are used to properly identify places on a map. Some outside geography do exist, such as th ...
representing
imaginary numbers An imaginary number is a real number multiplied by the imaginary unit , is usually used in engineering contexts where has other meanings (such as electrical current) which is defined by its property . The square of an imaginary number is . Fo ...
can be drawn perpendicular to the number line at zero.. The two lines forms the complex plane, a geometrical representation of the set of
complex numbers In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
.


In graphics design


See also

* Affine transformation *
Curve In mathematics, a curve (also called a curved line in older texts) is an object similar to a line (geometry), line, but that does not have to be Linearity, straight. Intuitively, a curve may be thought of as the trace left by a moving point (ge ...
*
Distance between two parallel lines The distance between two parallel Parallel is a geometric term of location which may refer to: Computing * Parallel algorithm * Parallel computing * Parallel metaheuristic * Parallel (software), a UNIX utility for running programs in paral ...
*
Distance from a point to a line In Euclidean geometry, the distance from a point to a line'' is the shortest distance from a given point to any point on an infinite straight line. It is the perpendicular distance of the point to the line, the length of the line segment which join ...
*
Imaginary line (mathematics) In complex geometry, an imaginary line is a straight line that only contains one real point. It can be proven that this point is the intersection point with the conjugated line. It is a special case of an imaginary curve. An imaginary line is ...
*
Incidence (geometry) In geometry, an incidence relation is a heterogeneous relation that captures the idea being expressed when phrases such as "a point ''lies on'' a line" or "a line is ''contained in'' a plane" are used. The most basic incidence relation is that betw ...
*
Line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
*
Generalised circle In geometry, a generalized circle, also referred to as a "cline" or "circline", is a straight line or a circle. The concept is mainly used in inversive geometry, because straight lines and circles have very similar properties in that geometry and ...
*
Locus Locus (plural loci) is Latin for "place". It may refer to: Entertainment * Locus (comics), a Marvel Comics mutant villainess, a member of the Mutant Liberation Front * ''Locus'' (magazine), science fiction and fantasy magazine ** ''Locus Award' ...
*
Plane (geometry) In mathematics, a plane is a Euclidean (flat), two-dimensional surface that extends indefinitely. A plane is the two-dimensional analogue of a point (zero dimensions), a line (one dimension) and three-dimensional space. Planes can arise as s ...
*
Polyline In geometry, a polygonal chain is a connected series of line segments. More formally, a polygonal chain is a curve specified by a sequence of points (A_1, A_2, \dots, A_n) called its vertices. The curve itself consists of the line segments co ...


References


External links

*
Equations of the Straight Line
at
Cut-the-Knot Alexander Bogomolny (January 4, 1948 July 7, 2018) was a Soviet-born Israeli-American mathematician. He was Professor Emeritus of Mathematics at the University of Iowa, and formerly research fellow at the Moscow Institute of Electronics and Math ...
{{DEFAULTSORT:Line (Geometry) Elementary geometry Analytic geometry Mathematical concepts