In mathematics, a limit point, accumulation point, or cluster point of a
set
Set, The Set, SET or SETS may refer to:
Science, technology, and mathematics Mathematics
*Set (mathematics), a collection of elements
*Category of sets, the category whose objects and morphisms are sets and total functions, respectively
Electro ...
in a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
is a point
that can be "approximated" by points of
in the sense that every
neighbourhood
A neighbourhood (British English, Irish English, Australian English and Canadian English) or neighborhood (American English; see spelling differences) is a geographically localised community within a larger city, town, suburb or rural are ...
of
with respect to the
topology
In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
on
also contains a point of
other than
itself. A limit point of a set
does not itself have to be an element of
There is also a closely related concept for
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
s. A cluster point or accumulation point of a
sequence
In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
in a
topological space
In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called points ...
is a point
such that, for every neighbourhood
of
there are infinitely many natural numbers
such that
This definition of a cluster or accumulation point of a sequence generalizes to
nets and
filters
Filter, filtering or filters may refer to:
Science and technology
Computing
* Filter (higher-order function), in functional programming
* Filter (software), a computer program to process a data stream
* Filter (video), a software component tha ...
.
The similarly named notion of a (respectively, a
limit point of a filter
Filters in topology, a subfield of mathematics, can be used to study topological spaces and define all basic topological notions such a convergence, Continuous map (topology), continuity, Compact space, compactness, and more. Filter (set theory) ...
, a
limit point of a net
In mathematics, more specifically in general topology and related branches, a net or Moore–Smith sequence is a generalization of the notion of a sequence. In essence, a sequence is a function whose domain is the natural numbers. The codoma ...
) by definition refers to a point that the
sequence converges to (respectively, the
filter converges to, the
net converges to). Importantly, although "limit point of a set" is synonymous with "cluster/accumulation point of a set", this is not true for sequences (nor nets or filters). That is, the term "limit point of a sequence" is synonymous with "cluster/accumulation point of a sequence".
The limit points of a set should not be confused with
adherent point
In mathematics, an adherent point (also closure point or point of closure or contact point) Steen, p. 5; Lipschutz, p. 69; Adamson, p. 15. of a subset A of a topological space X, is a point x in X such that every neighbourhood of x (or equivalen ...
s (also called ) for which every neighbourhood of
contains a point of
(that is, any point belonging to
closure of the set). Unlike for limit points, an adherent point of
may be
itself. A limit point can be characterized as an adherent point that is not an
isolated point
]
In mathematics, a point ''x'' is called an isolated point of a subset ''S'' (in a topological space ''X'') if ''x'' is an element of ''S'' and there exists a neighborhood of ''x'' which does not contain any other points of ''S''. This is equival ...
.
Limit points of a set should also not be confused with
boundary point
In topology and mathematics in general, the boundary of a subset of a topological space is the set of points in the closure of not belonging to the interior of . An element of the boundary of is called a boundary point of . The term boun ...
s. For example,
is a boundary point (but not a limit point) of the set
in
with
standard topology
In mathematics, the real coordinate space of dimension , denoted ( ) or is the set of the -tuples of real numbers, that is the set of all sequences of real numbers. With component-wise addition and scalar multiplication, it is a real vector ...
. However,
is a limit point (though not a boundary point) of interval