Aeroacoustics is a branch of
acoustics
Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician ...
that studies noise generation via either
turbulent
In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between t ...
fluid motion or
aerodynamic
Aerodynamics, from grc, ἀήρ ''aero'' (air) + grc, δυναμική (dynamics), is the study of the motion of air, particularly when affected by a solid object, such as an airplane wing. It involves topics covered in the field of fluid dyn ...
forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of this phenomenon is the
Aeolian tones produced by wind blowing over fixed objects.
Although no complete scientific theory of the generation of noise by aerodynamic flows has been established, most practical aeroacoustic analysis relies upon the so-called ''
aeroacoustic analogy Acoustic analogies are applied mostly in numerical aeroacoustics to reduce aeroacoustic sound sources to simple emitter types. They are therefore often also referred to as aeroacoustic analogies.
In general, aeroacoustic analogies are derived from ...
'',
proposed by Sir
James Lighthill
Sir Michael James Lighthill (23 January 1924 – 17 July 1998) was a British applied mathematician, known for his pioneering work in the field of aeroacoustics and for writing the Lighthill report on artificial intelligence.
Biography
J ...
in the 1950s while at the
University of Manchester
, mottoeng = Knowledge, Wisdom, Humanity
, established = 2004 – University of Manchester Predecessor institutions: 1956 – UMIST (as university college; university 1994) 1904 – Victoria University of Manchester 1880 – Victoria Univer ...
.
[ whereby the governing equations of motion of the fluid are coerced into a form reminiscent of the ]wave equation
The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields — as they occur in classical physics — such as mechanical waves (e.g. water waves, sound waves and s ...
of "classical" (i.e. linear) acoustics in the left-hand side with the remaining terms as sources in the right-hand side.
History
The modern discipline of aeroacoustics can be said to have originated with the first publication of Lighthill in the early 1950s, when noise generation associated with the jet engine
A jet engine is a type of reaction engine discharging a fast-moving jet of heated gas (usually air) that generates thrust by jet propulsion. While this broad definition can include rocket, Pump-jet, water jet, and hybrid propulsion, the term ...
was beginning to be placed under scientific scrutiny.
Lighthill's equation
Lighthill rearranged the Navier–Stokes equations
In physics, the Navier–Stokes equations ( ) are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician Geo ...
, which govern the flow of a compressible
In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility or, if the temperature is held constant, the isothermal compressibility) is a measure of the instantaneous relative volume change of a f ...
viscous
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water.
Viscosity quantifies the inter ...
fluid
In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
, into an inhomogeneous
Homogeneity and heterogeneity are concepts often used in the sciences and statistics relating to the uniformity of a substance or organism. A material or image that is homogeneous is uniform in composition or character (i.e. color, shape, siz ...
wave equation
The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields — as they occur in classical physics — such as mechanical waves (e.g. water waves, sound waves and s ...
, thereby making a connection between fluid mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids ( liquids, gases, and plasmas) and the forces on them.
It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical and bio ...
and acoustics
Acoustics is a branch of physics that deals with the study of mechanical waves in gases, liquids, and solids including topics such as vibration, sound, ultrasound and infrasound. A scientist who works in the field of acoustics is an acoustician ...
. This is often called "Lighthill's analogy" because it presents a model for the acoustic field that is not, strictly speaking, based on the physics of flow-induced/generated noise, but rather on the analogy of how they might be represented through the governing equations of a compressible fluid.
The first equation of interest is the conservation of mass
In physics and chemistry, the law of conservation of mass or principle of mass conservation states that for any system closed to all transfers of matter and energy, the mass of the system must remain constant over time, as the system's mass can ...
equation, which reads
:
where and represent the density and velocity of the fluid, which depend on space and time, and is the substantial derivative
In continuum mechanics, the material derivative describes the time rate of change of some physical quantity (like heat or momentum) of a material element that is subjected to a space-and-time-dependent macroscopic velocity field. The material der ...
.
Next is the conservation of momentum
In Newtonian mechanics, momentum (more specifically linear momentum or translational momentum) is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If is an object's mass an ...
equation, which is given by
:
where is the thermodynamic pressure
Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
, and is the viscous (or traceless) part of the stress tensor from the Navier–Stokes equations.
Now, multiplying the conservation of mass equation by and adding it to the conservation of momentum equation gives
:
Note that is a tensor
In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tenso ...
(see also tensor product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otimes W ...
). Differentiating the conservation of mass equation with respect to time, taking the divergence
In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the ...
of the last equation and subtracting the latter from the former, we arrive at
:
Subtracting , where is the speed of sound
The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At , the speed of sound in air is about , or one kilometre in or one mile in . It depends strongly on temperature as w ...
in the medium in its equilibrium (or quiescent) state, from both sides of the last equation and rearranging it results in
:
which is equivalent to
:
where is the identity
Identity may refer to:
* Identity document
* Identity (philosophy)
* Identity (social science)
* Identity (mathematics)
Arts and entertainment Film and television
* ''Identity'' (1987 film), an Iranian film
* ''Identity'' (2003 film), ...
tensor, and denotes the (double) tensor contraction
In multilinear algebra, a tensor contraction is an operation on a tensor that arises from the natural pairing of a finite-dimensional vector space and its dual. In components, it is expressed as a sum of products of scalar components of the tenso ...
operator.
The above equation is the celebrated Lighthill equation Aeroacoustics is a branch of acoustics that studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of th ...
of aeroacoustics. It is a wave equation
The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields — as they occur in classical physics — such as mechanical waves (e.g. water waves, sound waves and s ...
with a source term on the right-hand side, i.e. an inhomogeneous wave equation. The argument of the "double-divergence operator" on the right-hand side of last equation, i.e. , is the so-called ''Lighthill turbulence stress tensor Aeroacoustics is a branch of acoustics that studies noise generation via either turbulent fluid motion or aerodynamic forces interacting with surfaces. Noise generation can also be associated with periodically varying flows. A notable example of th ...
for the acoustic field'', and it is commonly denoted by .
Using Einstein notation
In mathematics, especially the usage of linear algebra in Mathematical physics, Einstein notation (also known as the Einstein summation convention or Einstein summation notation) is a notational convention that implies summation over a set of ...
, Lighthill’s equation can be written as
:
where
:
and is the Kronecker delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise:
\delta_ = \begin
0 &\text i \neq j, \\
1 &\ ...
. Each of the acoustic source terms, i.e. terms in , may play a significant role in the generation of noise depending upon flow conditions considered. describes unsteady convection of flow (or Reynolds' Stress, developed by Osborne Reynolds
Osborne Reynolds (23 August 1842 – 21 February 1912) was an Irish-born innovator in the understanding of fluid dynamics. Separately, his studies of heat transfer between solids and fluids brought improvements in boiler and condenser design. ...
), describes sound generated by viscosity, and describes non-linear acoustic generation processes.
In practice, it is customary to neglect the effects of viscosity
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water.
Viscosity quantifies the inte ...
on the fluid, i.e. one takes , because it is generally accepted that the effects of the latter on noise generation, in most situations, are orders of magnitude smaller than those due to the other terms. Lighthill provides an in-depth discussion of this matter.
In aeroacoustic studies, both theoretical and computational efforts are made to solve for the acoustic source terms in Lighthill's equation in order to make statements regarding the relevant aerodynamic noise generation mechanisms present.
Finally, it is important to realize that Lighthill's equation is exact in the sense that no approximations of any kind have been made in its derivation.
Related model equations
In their classical text on fluid mechanics
Fluid mechanics is the branch of physics concerned with the mechanics of fluids ( liquids, gases, and plasmas) and the forces on them.
It has applications in a wide range of disciplines, including mechanical, aerospace, civil, chemical and bio ...
, Landau
Landau ( pfl, Landach), officially Landau in der Pfalz, is an autonomous (''kreisfrei'') town surrounded by the Südliche Weinstraße ("Southern Wine Route") district of southern Rhineland-Palatinate, Germany. It is a university town (since 1990 ...
and Lifshitz Lifshitz (or Lifschitz) is a surname, which may be derived from the Polish city of Głubczyce (German: Leobschütz).
The surname has many variants, including: , , Lifshits, Lifshuts, Lefschetz; Lipschitz ( Lipshitz), Lipshits, Lipchitz, Lips ...
[L. D. Landau and E. M. Lifshitz, ''Fluid Mechanics'' 2ed., Course of Theoretical Physics vol. 6, Butterworth-Heinemann (1987) §75.] derive an aeroacoustic equation analogous to Lighthill's (i.e., an equation for sound generated by "turbulent
In fluid dynamics, turbulence or turbulent flow is fluid motion characterized by chaotic changes in pressure and flow velocity. It is in contrast to a laminar flow, which occurs when a fluid flows in parallel layers, with no disruption between t ...
" fluid motion), but for the incompressible flow
In fluid mechanics or more generally continuum mechanics, incompressible flow ( isochoric flow) refers to a flow in which the material density is constant within a fluid parcel—an infinitesimal volume that moves with the flow velocity. An e ...
of an inviscid
The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water.
Viscosity quantifies the inte ...
fluid. The inhomogeneous wave equation that they obtain is for the ''pressure'' rather than for the density of the fluid. Furthermore, unlike Lighthill's equation, Landau and Lifshitz's equation is not exact; it is an approximation.
If one is to allow for approximations to be made, a simpler way (without necessarily assuming the fluid is incompressible
In fluid mechanics or more generally continuum mechanics, incompressible flow ( isochoric flow) refers to a flow in which the material density is constant within a fluid parcel—an infinitesimal volume that moves with the flow velocity. An eq ...
) to obtain an approximation to Lighthill's equation is to assume that , where and are the (characteristic) density and pressure of the fluid in its equilibrium state. Then, upon substitution the assumed relation between pressure and density into we obtain the equation (for an inviscid fluid, σ = 0)
:
And for the case when the fluid is indeed incompressible, i.e. (for some positive constant ) everywhere, then we obtain exactly the equation given in Landau and Lifshitz, namely
:
A similar approximation (*)\,">n the context of equation namely , is suggested by Lighthill ee Eq. (7) in the latter paper
Of course, one might wonder whether we are justified in assuming that . The answer is affirmative, if the flow satisfies certain basic assumptions. In particular, if and , then the assumed relation follows directly from the ''linear'' theory of sound waves (see, e.g., the linearized Euler equations and the acoustic wave equation
In physics, the acoustic wave equation governs the propagation of acoustic waves through a material medium resp. a standing wavefield. The form of the equation is a second order partial differential equation. The equation describes the evolut ...
). In fact, the approximate relation between and that we assumed is just a linear approximation
In mathematics, a linear approximation is an approximation of a general function using a linear function (more precisely, an affine function). They are widely used in the method of finite differences to produce first order methods for solving or a ...
to the generic barotropic
In fluid dynamics, a barotropic fluid is a fluid whose density is a function of pressure only. The barotropic fluid is a useful model of fluid behavior in a wide variety of scientific fields, from meteorology to astrophysics.
The density of most ...
equation of state
In physics, chemistry, and thermodynamics, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal ...
of the fluid.
However, even after the above deliberations, it is still not clear whether one is justified in using an inherently ''linear'' relation to simplify a ''nonlinear'' wave equation. Nevertheless, it is a very common practice in nonlinear acoustics
Nonlinear acoustics (NLA) is a branch of physics and acoustics dealing with sound waves of sufficiently large amplitudes. Large amplitudes require using full systems of governing equations of fluid dynamics (for sound waves in liquids and gas ...
as the textbooks on the subject show: e.g., Naugolnykh and Ostrovsky and Hamilton and Morfey.[M. F. Hamilton and C. L. Morfey, "Model Equations," ''Nonlinear Acoustics'', eds. M. F. Hamilton and D. T. Blackstock, Academic Press (1998) chap. 3.]
See also
* Acoustic theory
*Aeolian harp
An Aeolian harp (also wind harp) is a musical instrument that is played by the wind. Named for Aeolus, the ancient Greek god of the wind, the traditional Aeolian harp is essentially a wooden box including a sounding board, with strings stretched ...
*Computational aeroacoustics
Computational aeroacoustics is a branch of aeroacoustics that aims to analyze the generation of noise by turbulent flows through numerical methods.
History
The origin of computational aeroacoustics can only very likely be dated back to the middle ...
References
[Williams, J. E. Ffowcs, "The Acoustic Analogy—Thirty Years On" ''IMA J. Appl. Math.'' 32 (1984) pp. 113-124.]
[M. J. Lighthill, "On Sound Generated Aerodynamically. I. General Theory," ''Proc. R. Soc. Lond. A'' 211 (1952) pp. 564-587.]
[M. J. Lighthill, "On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound," ''Proc. R. Soc. Lond. A'' 222 (1954) pp. 1-32.]
External links
* M. J. Lighthill, "On Sound Generated Aerodynamically. I. General Theory," ''Proc. R. Soc. Lond. A'' 211 (1952) pp. 564–587
This article on JSTOR
* M. J. Lighthill, "On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound," ''Proc. R. Soc. Lond. A'' 222 (1954) pp. 1–32
This article on JSTOR
* L. D. Landau and E. M. Lifshitz, ''Fluid Mechanics'' 2ed., Course of Theoretical Physics vol. 6, Butterworth-Heinemann (1987) §75.
Preview from Amazon
* K. Naugolnykh and L. Ostrovsky, ''Nonlinear Wave Processes in Acoustics'', Cambridge Texts in Applied Mathematics vol. 9, Cambridge University Press (1998) chap. 1.
Preview from Google
* M. F. Hamilton and C. L. Morfey, "Model Equations," ''Nonlinear Acoustics'', eds. M. F. Hamilton and D. T. Blackstock, Academic Press (1998) chap. 3.
Preview from Google
Aeroacoustics at the University of Mississippi
Aeroacoustics at the University of Leuven
{{Webarchive, url=https://web.archive.org/web/20160304114401/http://www.grc.nasa.gov/WWW/microbus/cese/aeroex.html , date=2016-03-04
Aeroacoustics.info
Acoustics
Aerodynamics
Fluid dynamics
Sound