In
special and general relativity, a light cone (or "null cone") is the path that a flash of light, emanating from a single
event
Event may refer to:
Gatherings of people
* Ceremony, an event of ritual significance, performed on a special occasion
* Convention (meeting), a gathering of individuals engaged in some common interest
* Event management, the organization of e ...
(localized to a single point in space and a single moment in time) and traveling in all directions, would take through
spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
.
Details
If one imagines the light confined to a two-dimensional plane, the light from the flash spreads out in a circle after the event E occurs, and if we graph the growing circle with the vertical axis of the graph representing time, the result is a
cone
A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex.
A cone is formed by a set of line segments, half-lines, or lines con ...
, known as the future light cone. The past light cone behaves like the future light cone in reverse, a circle which contracts in radius at the speed of light until it converges to a point at the exact position and time of the event E. In reality, there are three space
dimensions
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coordina ...
, so the light would actually form an expanding or contracting sphere in three-dimensional (3D) space rather than a circle in 2D, and the light cone would actually be a
four-dimensional version of a cone whose cross-sections form 3D spheres (analogous to a normal three-dimensional cone whose cross-sections form 2D circles), but the concept is easier to visualize with the number of spatial dimensions reduced from three to two.
This view of special relativity was first proposed by
Albert Einstein
Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
's former professor
Hermann Minkowski
Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number t ...
and is known as
Minkowski space
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inerti ...
. The purpose was to create an
invariant
Invariant and invariance may refer to:
Computer science
* Invariant (computer science), an expression whose value doesn't change during program execution
** Loop invariant, a property of a program loop that is true before (and after) each iteratio ...
spacetime for all observers. To uphold
causality
Causality (also referred to as causation, or cause and effect) is influence by which one event, process, state, or object (''a'' ''cause'') contributes to the production of another event, process, state, or object (an ''effect'') where the cau ...
, Minkowski restricted spacetime to
non-Euclidean hyperbolic geometry
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai–Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P ...
.
Because signals and other causal influences cannot travel faster than light (see
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates:
# The laws o ...
), the light cone plays an essential role in defining the concept of
causality
Causality (also referred to as causation, or cause and effect) is influence by which one event, process, state, or object (''a'' ''cause'') contributes to the production of another event, process, state, or object (an ''effect'') where the cau ...
: for a given event E, the set of events that lie on or inside the past light cone of E would also be the set of all events that could send a signal that would have time to reach E and influence it in some way. For example, at a time ten years before E, if we consider the set of all events in the past light cone of E which occur at that time, the result would be a sphere (2D: disk) with a radius of ten light-years centered on the position where E will occur. So, any point on or inside the sphere could send a signal moving at the speed of light or slower that would have time to influence the event E, while points outside the sphere at that moment would not be able to have any causal influence on E. Likewise, the set of events that lie on or inside the ''future'' light cone of E would also be the set of events that could receive a signal sent out from the position and time of E, so the future light cone contains all the events that could potentially be causally influenced by E. Events which lie neither in the past or future light cone of E cannot influence or be influenced by E in relativity.
Mathematical construction
In
special relativity
In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates:
# The laws o ...
, a light cone (or null cone) is the surface describing the temporal evolution of a flash of light in
Minkowski spacetime
In mathematical physics, Minkowski space (or Minkowski spacetime) () is a combination of three-dimensional Euclidean space and time into a four-dimensional manifold where the spacetime interval between any two events is independent of the inert ...
. This can be visualized in 3-space if the two horizontal axes are chosen to be spatial dimensions, while the vertical axis is time.
The light cone is constructed as follows. Taking as event ''p'' a flash of light (light pulse) at time ''t''
0, all events that can be reached by this pulse from ''p'' form the future light cone of ''p'', while those events that can send a light pulse to ''p'' form the past light cone of ''p''.
Given an event ''E'', the light cone classifies all events in spacetime into 5 distinct categories:
* Events on the future light cone of ''E''.
* Events on the past light cone of ''E''.
* Events inside the future light cone of ''E'' are those affected by a material particle emitted at ''E''.
* Events inside the past light cone of ''E'' are those that can emit a material particle and affect what is happening at ''E''.
* All other events are in the (absolute) elsewhere of ''E'' and are those that cannot affect or be affected by ''E''.
The above classifications hold true in any frame of reference; that is, an event judged to be in the light cone by one observer, will also be judged to be in the same light cone by all other observers, no matter their frame of reference. This is why the concept is so powerful.
The above refers to an event occurring at a specific location and at a specific time. To say that one event cannot affect another means that light cannot get from the location of one to the other ''in a given amount of time''. Light from each event will ultimately make it to the ''former'' location of the other, but ''after'' those events have occurred.
As time progresses, the future light cone of a given event will eventually grow to encompass more and more locations (in other words, the 3D sphere that represents the cross-section of the 4D light cone at a particular moment in time becomes larger at later times). However, if we imagine running time backwards from a given event, the event's past light cone would likewise encompass more and more locations at earlier and earlier times. The farther locations will be at later times: for example, if we are considering the past light cone of an event which takes place on Earth today, a star 10,000 light years away would only be inside the past light cone at times 10,000 years or more in the past. The past light cone of an event on present-day Earth, at its very edges, includes very distant objects (every object in the
observable universe
The observable universe is a ball-shaped region of the universe comprising all matter that can be observed from Earth or its space-based telescopes and exploratory probes at the present time, because the electromagnetic radiation from these obj ...
), but only as they looked long ago, when the
Universe
The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. Acc ...
was young.
Two events at different locations, at the same time (according to a specific frame of reference), are always outside each other's past and future light cones; light cannot travel instantaneously. Other observers might see the events happening at different times and at different locations, but one way or another, the two events will likewise be seen to be outside each other's cones.
If using a
system of units
A system of measurement is a collection of units of measurement and rules relating them to each other. Systems of measurement have historically been important, regulated and defined for the purposes of science and commerce. Systems of measurement i ...
where the speed of light in vacuum is defined as exactly 1, for example if space is measured in
light-second
The light-second is a unit of length useful in astronomy, telecommunications and relativistic physics. It is defined as the distance that light travels in free space in one second, and is equal to exactly .
Just as the second forms the basis for ...
s and time is measured in seconds, then, provided the time axis is drawn
orthogonal
In mathematics, orthogonality is the generalization of the geometric notion of ''perpendicularity''.
By extension, orthogonality is also used to refer to the separation of specific features of a system. The term also has specialized meanings in ...
ly to the spatial axes, as the cone
bisects the time and space axes, it will show a slope of 45°, because light travels a distance of one light-second in
vacuum
A vacuum is a space devoid of matter. The word is derived from the Latin adjective ''vacuus'' for "vacant" or "void". An approximation to such vacuum is a region with a gaseous pressure much less than atmospheric pressure. Physicists often dis ...
during one second. Since special relativity requires the speed of light to be equal in every
inertial frame, all observers must arrive at the same angle of 45° for their light cones. Commonly a
Minkowski diagram
A spacetime diagram is a graphical illustration of the properties of space and time in the special theory of relativity. Spacetime diagrams allow a qualitative understanding of the corresponding phenomena like time dilation and length contractio ...
is used to illustrate this property of
Lorentz transformation
In physics, the Lorentz transformations are a six-parameter family of Linear transformation, linear coordinate transformation, transformations from a Frame of Reference, coordinate frame in spacetime to another frame that moves at a constant velo ...
s.
Elsewhere, an integral part of light cones is the region of spacetime outside the light cone at a given event (a point in spacetime). Events that are elsewhere from each other are mutually unobservable, and cannot be causally connected.
(The 45° figure really only has meaning in space-space, as we try to understand space-time by making space-space drawings. Space-space tilt is measured by
angle
In Euclidean geometry, an angle is the figure formed by two Ray (geometry), rays, called the ''Side (plane geometry), sides'' of the angle, sharing a common endpoint, called the ''vertex (geometry), vertex'' of the angle.
Angles formed by two ...
s, and calculated with
trig functions
In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in al ...
. Space-time tilt is measured by
rapidity
In relativity, rapidity is commonly used as a measure for relativistic velocity. Mathematically, rapidity can be defined as the hyperbolic angle that differentiates two frames of reference in relative motion, each frame being associated with di ...
, and calculated with
hyperbolic functions
In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points form a circle with a unit radius, the points form the right half of the un ...
.)
In general relativity
In flat spacetime, the future light cone of an event is the boundary of its
causal future and its past light cone is the boundary of its
causal past
In mathematical physics, the causal structure of a Lorentzian manifold describes the causal relationships between points in the manifold.
Introduction
In modern physics (especially general relativity) spacetime is represented by a Lorentzian m ...
.
In a curved spacetime, assuming spacetime is
globally hyperbolic, it is still true that the future light cone of an event
includes the boundary of its causal future (and similarly for the past). However
gravitational lensing
A gravitational lens is a distribution of matter (such as a cluster of galaxies) between a distant light source and an observer that is capable of bending the light from the source as the light travels toward the observer. This effect is known ...
can cause part of the light cone to fold in on itself, in such a way that part of the cone is strictly inside the causal future (or past), and not on the boundary.
Light cones also cannot all be tilted so that they are 'parallel'; this reflects the fact that the spacetime is curved and is essentially different from Minkowski space. In vacuum regions (those points of
spacetime
In physics, spacetime is a mathematical model that combines the three dimensions of space and one dimension of time into a single four-dimensional manifold. Spacetime diagrams can be used to visualize relativistic effects, such as why differen ...
free of matter), this inability to tilt all the light cones so that they are all parallel is reflected in the non-vanishing of the
Weyl tensor
In differential geometry, the Weyl curvature tensor, named after Hermann Weyl, is a measure of the curvature of spacetime or, more generally, a pseudo-Riemannian manifold. Like the Riemann curvature tensor, the Weyl tensor expresses the tidal f ...
.
See also
*
Absolute future
*
Absolute past
*
Hyperbolic partial differential equation
In mathematics, a hyperbolic partial differential equation of order n is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first n-1 derivatives. More precisely, the Cauchy problem can be ...
*
Hypercone
*
Light cone coordinates
*
Lorentz transformation
In physics, the Lorentz transformations are a six-parameter family of Linear transformation, linear coordinate transformation, transformations from a Frame of Reference, coordinate frame in spacetime to another frame that moves at a constant velo ...
*
Method of characteristics
In mathematics, the method of characteristics is a technique for solving partial differential equations. Typically, it applies to first-order equations, although more generally the method of characteristics is valid for any hyperbolic partial ...
*
Minkowski diagram
A spacetime diagram is a graphical illustration of the properties of space and time in the special theory of relativity. Spacetime diagrams allow a qualitative understanding of the corresponding phenomena like time dilation and length contractio ...
*
Monge cone In the mathematical theory of partial differential equations (PDE), the Monge cone is a geometrical object associated with a first-order equation. It is named for Gaspard Monge. In two dimensions, let
:F(x,y,u,u_x,u_y) = 0\qquad\qquad (1)
be a PDE ...
*
Null cone
In mathematics, given a vector space ''X'' with an associated quadratic form ''q'', written , a null vector or isotropic vector is a non-zero element ''x'' of ''X'' for which .
In the theory of real bilinear forms, definite quadratic forms and ...
*
Wave equation
The (two-way) wave equation is a second-order linear partial differential equation for the description of waves or standing wave fields — as they occur in classical physics — such as mechanical waves (e.g. water waves, sound waves and s ...
References
External links
* The Einstein-Minkowski Spacetime
Introducing the Light ConeRSS feed of stars in one's personal light cone
{{Authority control
Astrophysics
Theory of relativity
Lorentzian manifolds
Light