Lifson–Roig Model
   HOME

TheInfoList



OR:

In
polymer science Polymer science or macromolecular science is a subfield of materials science concerned with polymers, primarily synthetic polymers such as plastics and elastomers. The field of polymer science includes researchers in multiple disciplines includ ...
, the Lifson–Roig model is a helix-coil transition model applied to the
alpha helix The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues e ...
-
random coil In polymer chemistry, a random coil is a conformation of polymers where the monomer subunits are oriented randomly while still being bonded to adjacent units. It is not one specific shape, but a statistical distribution of shapes for all the cha ...
transition of
polypeptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. A p ...
s; it is a refinement of the
Zimm–Bragg model In statistical mechanics, the Zimm–Bragg model is a helix-coil transition model that describes helix-coil transitions of macromolecules, usually polymer chains. Most models provide a reasonable approximation of the fractional helicity of a given ...
that recognizes that a polypeptide
alpha helix The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues e ...
is only stabilized by a
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
only once three consecutive residues have adopted the helical conformation. To consider three consecutive residues each with two states (helix and coil), the Lifson–Roig model uses a 4x4 transfer matrix instead of the 2x2 transfer matrix of the Zimm–Bragg model, which considers only two consecutive residues. However, the simple nature of the coil state allows this to be reduced to a 3x3 matrix for most applications. The Zimm–Bragg and Lifson–Roig models are but the first two in a series of analogous transfer-matrix methods in polymer science that have also been applied to
nucleic acid Nucleic acids are biopolymers, macromolecules, essential to all known forms of life. They are composed of nucleotides, which are the monomers made of three components: a 5-carbon sugar, a phosphate group and a nitrogenous base. The two main cl ...
s and branched polymers. The transfer-matrix approach is especially elegant for homopolymers, since the statistical mechanics may be solved exactly using a simple
eigenanalysis In linear algebra, an eigenvector () or characteristic vector of a linear transformation is a nonzero vector that changes at most by a scalar factor when that linear transformation is applied to it. The corresponding eigenvalue, often denoted ...
.


Parameterization

The Lifson–Roig model is characterized by three parameters: the statistical weight for nucleating a helix, the weight for propagating a helix and the weight for forming a hydrogen bond, which is granted only if three consecutive residues are in a helical state. Weights are assigned at each position in a polymer as a function of the conformation of the residue in that position and as a function of its two neighbors. A statistical weight of 1 is assigned to the "reference state" of a coil unit whose neighbors are both coils, and a "nucleation" unit is defined (somewhat arbitrarily) as two consecutive helical units neighbored by a coil. A major modification of the original Lifson–Roig model introduces "capping" parameters for the helical termini, in which the N- and C-terminal capping weights may vary independently. The correlation matrix for this modification can be represented as a matrix M, reflecting the statistical weights of the helix state ''h'' and coil state ''c''. The Lifson–Roig model may be solved by the
transfer-matrix method In statistical mechanics, the transfer-matrix method is a Mathematical physics, mathematical technique which is used to write the Partition function (mathematics), partition function into a simpler form. It was introduced in 1941 by Hans Kramers ...
using the transfer matrix M shown at the right, where ''w'' is the statistical weight for helix propagation, ''v'' for initiation, ''n'' for N-terminal capping, and ''c'' for C-terminal capping. (In the traditional model ''n'' and ''c'' are equal to 1.) The partition function for the helix-coil transition equilibrium is : Z = V \left(\prod_^ M(i)\right)\tilde where ''V'' is the end
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
V= 0 0 1/math>, arranged to ensure the coil state of the first and last residues in the polymer. This strategy for parameterizing helix-coil transitions was originally developed for
alpha helices The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located four residues ear ...
, whose
hydrogen bond In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
s occur between residues ''i'' and ''i+4''; however, it is straightforward to extend the model to 310 helices and pi helices, with ''i+3'' and ''i+5'' hydrogen bonding patterns respectively. The complete alpha/310/pi transfer matrix includes weights for transitions between helix types as well as between helix and coil states. However, because 310 helices are much more common in the
tertiary structure Protein tertiary structure is the three dimensional shape of a protein. The tertiary structure will have a single polypeptide chain "backbone" with one or more protein secondary structures, the protein domains. Amino acid side chains may int ...
s of proteins than pi helices, extension of the Lifson–Roig model to accommodate 310 helices - resulting in a 9x9 transfer matrix when capping is included - has found a greater range of application. Analogous extensions of the Zimm–Bragg model have been put forth but have not accommodated mixed helical conformations.


References

{{DEFAULTSORT:Lifson-Roig model Polymer physics Protein structure Statistical mechanics