HOME

TheInfoList



OR:

In
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conne ...
, the lexicographic product or (graph) composition of graphs and is a graph such that * the vertex set of is the
cartesian product In mathematics, specifically set theory, the Cartesian product of two sets ''A'' and ''B'', denoted ''A''×''B'', is the set of all ordered pairs where ''a'' is in ''A'' and ''b'' is in ''B''. In terms of set-builder notation, that is : A\ti ...
; and * any two vertices and are adjacent in if and only if either is adjacent with in or and is adjacent with in . If the edge relations of the two graphs are
order relation Order theory is a branch of mathematics that investigates the intuitive notion of order using binary relations. It provides a formal framework for describing statements such as "this is less than that" or "this precedes that". This article intro ...
s, then the edge relation of their lexicographic product is the corresponding
lexicographic order In mathematics, the lexicographic or lexicographical order (also known as lexical order, or dictionary order) is a generalization of the alphabetical order of the dictionaries to sequences of ordered symbols or, more generally, of elements of a ...
. The lexicographic product was first studied by . As showed, the problem of recognizing whether a graph is a lexicographic product is equivalent in complexity to the
graph isomorphism problem The graph isomorphism problem is the computational problem of determining whether two finite graphs are isomorphic. The problem is not known to be solvable in polynomial time nor to be NP-complete, and therefore may be in the computational compl ...
.


Properties

The lexicographic product is in general
noncommutative In mathematics, a binary operation is commutative if changing the order of the operands does not change the result. It is a fundamental property of many binary operations, and many mathematical proofs depend on it. Most familiar as the name o ...
: . However it satisfies a
distributive law In mathematics, the distributive property of binary operations generalizes the distributive law, which asserts that the equality x \cdot (y + z) = x \cdot y + x \cdot z is always true in elementary algebra. For example, in elementary arithmetic, ...
with respect to disjoint union: . In addition it satisfies an identity with respect to complementation: . In particular, the lexicographic product of two
self-complementary graph In the mathematical field of graph theory, a self-complementary graph is a graph which is isomorphic to its complement. The simplest non-trivial self-complementary graphs are the path graph and the cycle graph. There is no known characterizatio ...
s is self-complementary. The
independence number Independence is a condition of a person, nation, country, or Sovereign state, state in which residents and population, or some portion thereof, exercise self-government, and usually sovereignty, over its territory. The opposite of independ ...
of a lexicographic product may be easily calculated from that of its factors : :. The
clique number In the mathematical area of graph theory, a clique ( or ) is a subset of vertices of an undirected graph such that every two distinct vertices in the clique are adjacent. That is, a clique of a graph G is an induced subgraph of G that is compl ...
of a lexicographic product is as well multiplicative: :. The
chromatic number In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices o ...
of a lexicographic product is equal to the ''b''-fold chromatic number of ''G'', for ''b'' equal to the chromatic number of ''H'': :, where . The lexicographic product of two graphs is a
perfect graph In graph theory, a perfect graph is a graph in which the chromatic number of every induced subgraph equals the order of the largest clique of that subgraph (clique number). Equivalently stated in symbolic terms an arbitrary graph G=(V,E) is perfec ...
if and only if both factors are perfect .


References

*. *. * * *.


External links

*{{mathworld , title = Graph Lexicographic Product , urlname = GraphLexicographicProduct Graph products