Lattice Confinement Fusion
   HOME

TheInfoList



OR:

Lattice confinement fusion (LCF) is a type of
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manifest ...
in which
deuteron Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one n ...
-saturated metals are exposed to
gamma radiation A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically s ...
or ion beams, such as in an IEC fusor, avoiding the confined high-temperature gasses used in other methods of fusion.


History

In 2020, a team of
NASA The National Aeronautics and Space Administration (NASA ) is an independent agency of the US federal government responsible for the civil space program, aeronautics research, and space research. NASA was established in 1958, succeeding t ...
researchers seeking a new energy source for deep-space exploration missions published the first paper describing a method for triggering nuclear fusion in the space between the atoms of a metal solid, an example of screened fusion. The experiments did not produce self-sustaining reactions, and the electron source itself was energetically expensive.


Technique

The reaction is fueled with
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two Stable isotope ratio, stable isotopes of hydrogen (the other being Hydrogen atom, protium, or hydrogen-1). The atomic nucleus, nucleus of a deuterium ato ...
, a widely available non-radioactive hydrogen isotope composed of one
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
, one
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
, and one
electron The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no kn ...
. The deuterium is confined in the space between the atoms of a metal solid such as
erbium Erbium is a chemical element with the symbol Er and atomic number 68. A silvery-white solid metal when artificially isolated, natural erbium is always found in chemical combination with other elements. It is a lanthanide, a rare-earth element ...
or
titanium Titanium is a chemical element with the symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in ...
. Erbium can indefinitely maintain 1023 cm−3 deuterium atoms (deuterons) at room temperature. The deuteron-saturated metal forms an overall neutral
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
. The
electron density In quantum chemistry, electron density or electronic density is the measure of the probability of an electron being present at an infinitesimal element of space surrounding any given point. It is a scalar quantity depending upon three spatial va ...
of the metal reduces the likelihood that two deuterium nuclei will repel each other as they get closer together. A dynamitron electron-beam accelerator generates an
electron beam Cathode rays or electron beam (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to ele ...
that hits a
tantalum Tantalum is a chemical element with the symbol Ta and atomic number 73. Previously known as ''tantalium'', it is named after Tantalus, a villain in Greek mythology. Tantalum is a very hard, ductile, lustrous, blue-gray transition metal that is ...
target and produces
gamma rays A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically ...
, irradiating titanium deuteride or erbium deuteride. A gamma ray of about 2.2 megaelectron volts (MeV) strikes a deuteron and splits it into proton and neutron. The neutron collides with another deuteron. This second, energetic deuteron can experience screened fusion or a stripping reaction. Although the lattice is notionally at room temperature, LCF creates an energetic environment inside the lattice where individual atoms achieve fusion-level energies. Heated regions are created at the
micrometer Micrometer can mean: * Micrometer (device), used for accurate measurements by means of a calibrated screw * American spelling of micrometre The micrometre ( international spelling as used by the International Bureau of Weights and Measures; ...
scale.


Screened fusion

The energetic deuteron fuses with another deuteron, yielding either a 3helium nucleus and a neutron or a 3hydrogen nucleus and a proton. These fusion products may fuse with other deuterons, creating an alpha particle, or with another 3helium or 3hydrogen nucleus. Each releases energy, continuing the process.


Stripping reaction

In a stripping reaction, the metal strips a neutron from accelerated deuteron and fuses it with the metal, yielding a different isotope of the metal. If the produced metal isotope is radioactive, it may decay into another element, releasing energy in the form of
ionizing radiation Ionizing radiation (or ionising radiation), including nuclear radiation, consists of subatomic particles or electromagnetic waves that have sufficient energy to ionize atoms or molecules by detaching electrons from them. Some particles can travel ...
in the process.


Palladium-silver

A related technique pumps deuterium gas through the wall of a
palladium Palladium is a chemical element with the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself na ...
-silver alloy tubing. The palladium is electrolytically loaded with deuterium. In some experiments this produces
fast neutrons The neutron detection temperature, also called the neutron energy, indicates a free neutron's kinetic energy, usually given in electron volts. The term ''temperature'' is used, since hot, thermal and cold neutrons are moderated in a medium with ...
that trigger further reactions. Other experimenters (Fralick et al) also made claims of anomalous heat produced by this system.


Comparison to other fusion techniques

Pyroelectric fusion Pyroelectric fusion refers to the technique of using pyroelectric crystals to generate high strength electrostatic fields to accelerate deuterium ions (tritium might also be used someday) into a metal hydride target also containing deuterium (or t ...
has previously been observed in erbium hydrides. A high-energy beam of deuterium ions generated by pyroelectric crystals was directed at a stationary, room-temperature or target, and fusion was observed. In previous fusion research, such as
inertial confinement fusion Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with thermonuclear fuel. In modern machines, the targets are small spherical pellets about the size of ...
(ICF), fuel such as the rarer
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus o ...
is subjected to high pressure for a nano-second interval, triggering fusion. In
magnetic confinement fusion Magnetic confinement fusion is an approach to generate thermonuclear fusion power that uses magnetic fields to confine fusion fuel in the form of a plasma. Magnetic confinement is one of two major branches of fusion energy research, along with i ...
(MCF), the fuel is heated in a plasma to temperatures much higher than those at the center of the Sun. In LCF, conditions sufficient for fusion are created in a metal lattice that is held at ambient temperature during exposure to high-energy
photons A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless, so they alway ...
. ICF devices momentarily reach densities of 1026 cc−1, while MCF devices momentarily achieve 1014. Lattice confinement fusion requires energetic deuterons and is therefore not
cold fusion Cold fusion is a hypothesized type of nuclear reaction that would occur at, or near, room temperature. It would contrast starkly with the "hot" fusion that is known to take place naturally within stars and artificially in hydrogen bombs and p ...
. Lattice confinement fusion is used as a method to increase the cathode fuel density of inertial electrostatic fusion devices such as a Farnsworth-Hirsch fusor. This increases the probability of fusion events occurring and therefore the radiation output produced. In applications where fusors are used as X-ray, neutron, or proton radiation source, lattice confinement fusion improves the energy efficiency of the device.


See also

*
Inertial confinement fusion Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with thermonuclear fuel. In modern machines, the targets are small spherical pellets about the size of ...
*
Magnetized target fusion Magnetized Target Fusion (MTF) is a fusion power concept that combines features of magnetic confinement fusion (MCF) and inertial confinement fusion (ICF). Like the magnetic approach, the fusion fuel is confined at lower density by magnetic fields ...
*
Pyroelectric fusion Pyroelectric fusion refers to the technique of using pyroelectric crystals to generate high strength electrostatic fields to accelerate deuterium ions (tritium might also be used someday) into a metal hydride target also containing deuterium (or t ...
*
Inertial electrostatic confinement Inertial electrostatic confinement, or IEC, is a class of fusion power devices that use electric fields to confine the plasma rather than the more common approach using magnetic fields found in magnetic fusion energy (MFE) designs. Most IEC d ...


References

{{Fusion power Nuclear fusion Nuclear fusion reactions NASA research centers Space exploration