Laser pumping is the act of energy transfer from an external source into the
gain medium
The active laser medium (also called gain medium or lasing medium) is the source of optical gain within a laser. The gain results from the stimulated emission of photons through electronic or molecular transitions to a lower energy state from a ...
of a
laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
. The energy is absorbed in the medium, producing
excited state
In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers to a ...
s in its atoms. When the number of particles in one excited state exceeds the number of particles in the
ground state
The ground state of a quantum-mechanical system is its stationary state of lowest energy; the energy of the ground state is known as the zero-point energy of the system. An excited state is any state with energy greater than the ground state. ...
or a less-excited state,
population inversion
In science, specifically statistical mechanics, a population inversion occurs while a system (such as a group of atoms or molecules) exists in a state in which more members of the system are in higher, excited states than in lower, unexcited energ ...
is achieved. In this condition, the mechanism of
stimulated emission
Stimulated emission is the process by which an incoming photon of a specific frequency can interact with an excited atomic electron (or other excited molecular state), causing it to drop to a lower energy level. The liberated energy transfers to th ...
can take place and the medium can act as a
laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
or an
optical amplifier
An optical amplifier is a device that amplifies an optical signal directly, without the need to first convert it to an electrical signal. An optical amplifier may be thought of as a laser without an optical cavity, or one in which feedback fr ...
. The pump power must be higher than the
lasing threshold The lasing threshold is the lowest excitation level at which a laser's output is dominated by stimulated emission rather than by spontaneous emission. Below the threshold, the laser's output power rises slowly with increasing excitation. Above t ...
of the laser.
The pump energy is usually provided in the form of light or
electric current
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
, but more exotic sources have been used, such as
chemical
A chemical substance is a form of matter having constant chemical composition and characteristic properties. Some references add that chemical substance cannot be separated into its constituent elements by physical separation methods, i.e., wi ...
or
nuclear reaction
In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two atomic nucleus, nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a t ...
s.
Optical pumping
Pumping cavities
A laser pumped with an arc lamp or a flashlamp is usually pumped through the lateral wall of the lasing medium, which is often in the form of a
crystal
A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
rod containing a metallic impurity or a glass tube containing a liquid dye, in a condition known as "side-pumping." To use the lamp's energy most efficiently, the lamps and lasing medium are contained in a reflective cavity that will redirect most of the lamp's energy into the rod or dye cell.
In the most common configuration, the gain medium is in the form of a rod located at one
focus
Focus, or its plural form foci may refer to:
Arts
* Focus or Focus Festival, former name of the Adelaide Fringe arts festival in South Australia Film
*''Focus'', a 1962 TV film starring James Whitmore
* ''Focus'' (2001 film), a 2001 film based ...
of a mirrored cavity, consisting of an elliptical cross-section perpendicular to the rod's axis. The flashlamp is a tube located at the other focus of the ellipse. Often the mirror's coating is chosen to reflect
wavelength
In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats.
It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
s that are shorter than the lasing output while absorbing or transmitting wavelengths that are the same or longer, to minimize
thermal lens
A thermal column (or thermal) is a rising mass of buoyant air, a convective current in the atmosphere, that transfers heat energy vertically. Thermals are created by the uneven heating of Earth's surface from solar radiation, and are an example ...
ing. In other cases an absorber for the longer wavelengths is used. Often, the lamp is surrounded by a cylindrical jacket called a flow tube. This flow tube is usually made of a glass that will absorb unsuitable wavelengths, such as ultraviolet, or provide a path for cooling water which absorbs infrared. Often, the jacket is given a
dielectric coating
A dielectric mirror, also known as a Bragg mirror, is a type of mirror composed of multiple thin layers of dielectric material, typically deposited on a substrate of glass or some other optical material. By careful choice of the type and thickne ...
that reflects unsuitable wavelengths of light back into the lamp. This light is absorbed and some of it is re-emitted at suitable wavelengths. The flow tube also serves to protect the rod in the event of a violent lamp failure.
Smaller ellipses create fewer reflections, (a condition called "close-coupling"), giving higher intensity in the center of the rod. For a single flashlamp, if the lamp and rod are equal diameter, an ellipse that is twice as wide as it is high is usually the most efficient at imaging the light into the rod. The rod and the lamp are relatively long to minimize the effect of losses at the end faces and to provide a sufficient length of gain medium. Longer flashlamps are also more efficient at transferring electrical energy into light, due to higher
impedance.
However, if the rod is too long in relation to its diameter a condition called "prelasing" can occur, depleting the rod's energy before it can properly build up. Rod ends are often antireflection coated or cut at
Brewster's angle
Brewster's angle (also known as the polarization angle) is an angle of incidence at which light with a particular polarization is perfectly transmitted through a transparent dielectric surface, with ''no reflection''. When ''unpolarized'' light ...
to minimize this effect. Flat mirrors are also often used at the ends of the pump cavity to reduce loss.
[''Solid-state laser engineering'' by Walter Koechner – Springer-Verlag 1965 Page 368-376]
Variations on this design use more complex mirrors composed of overlapping elliptical shapes, to allow multiple flashlamps to pump a single rod. This allows greater power, but are less efficient because not all of the light is correctly imaged into the rod, leading to increased thermal losses. These losses can be minimized by using a close-coupled cavity. This approach may allow more symmetric pumping, increasing beam quality, however.
Another configuration uses a rod and a flashlamp in a cavity made of a
diffuse reflecting material, such as
spectralon
Spectralon is a fluoropolymer that has the highest diffuse reflectance of any known material or coating over the ultraviolet, visible, and near-infrared regions of the spectrum. It exhibits highly Lambertian behavior, and can be machined into a ...
or powdered
barium sulfate
Barium sulfate (or sulphate) is the inorganic compound with the chemical formula Ba SO4. It is a white crystalline solid that is odorless and insoluble in water. It occurs as the mineral barite, which is the main commercial source of barium an ...
. These cavities are often circular or oblong, as focusing the light is not a primary objective. This doesn't couple the light as well into the lasing medium, since the light makes many reflections before reaching the rod, but often requires less maintenance than metalized reflectors. The increased number of reflections is compensated for by the diffuse medium's higher reflectivity: 99% compared to 97% for a gold mirror. This approach is more compatible with unpolished rods or multiple lamps.
Parasitic modes occur when reflections are generated in directions other than along the length of the rod, which can use up energy that would otherwise be available to the beam. This can be a particular problem if the barrel of the rod is polished. Cylindrical laser rods support
whispering gallery
The Whispering Gallery of St Paul's Cathedral, London
A whispering gallery is usually a circular, hemispherical, elliptical or ellipsoidal enclosure, often beneath a dome or a vault, in which whispers can be heard clearly in other parts of the ...
modes due to
total internal reflection
Total internal reflection (TIR) is the optical phenomenon in which waves arriving at the interface (boundary) from one medium to another (e.g., from water to air) are not refracted into the second ("external") medium, but completely reflected b ...
between the rod and the cooling water, which reflect continuously around the circumference of the rod.
Light pipe
Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 tera ...
modes can reflect down the length of the rod in a zig-zag path. If the rod has an antireflection coating, or is immersed in a fluid that matches its
refractive index
In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.
The refractive index determines how much the path of light is bent, or ...
, it can dramatically reduce these parasitic reflections. Likewise, if the barrel of the rod is rough ground (frosted), or grooved, internal reflections can be dispersed.
Pumping with a single lamp tends to focus most of the energy on one side, worsening the beam profile. It is common for rods to have a frosted barrel, to diffuse the light, providing a more even distribution of light throughout the rod. This allows more energy absorption throughout the gain medium for a better
transverse mode
A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and microwav ...
. A frosted flow tube or diffuse reflector, while leading to lowered transfer efficiency, helps increase this effect, improving the
gain
Gain or GAIN may refer to:
Science and technology
* Gain (electronics), an electronics and signal processing term
* Antenna gain
* Gain (laser), the amplification involved in laser emission
* Gain (projection screens)
* Information gain in de ...
.
Laser host materials are chosen to have a low absorption; only the
dopant
A dopant, also called a doping agent, is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When ...
absorbs. Therefore, any light at frequencies not absorbed by the doping will go back into the lamp and reheat the plasma, shortening lamp life.
Flashlamp pumping
Flashlamps were the earliest energy source for lasers. They are used for high pulsed energies in both solid-state and dye lasers. They produce a broad spectrum of light, causing most of the energy to be wasted as heat in the gain medium. Flashlamps also tend to have a short lifetime. The first laser consisted of a helical flashlamp surrounding a ruby rod.
Quartz
Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon-oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical form ...
flashlamps are the most common type used in lasers, and, at low energies or high repetition rates, can operate at temperatures as high as 900 °C. Higher average powers or repetition rates require water cooling. The water usually has to wash across not only the arc length of the lamp, but across the electrode portion of the glass as well. Water-cooled flashlamps are usually manufactured with the glass shrunken around the electrode to allow direct cooling of the
tungsten
Tungsten, or wolfram, is a chemical element with the symbol W and atomic number 74. Tungsten is a rare metal found naturally on Earth almost exclusively as compounds with other elements. It was identified as a new element in 1781 and first isolat ...
. If the electrode is allowed to heat much more than the glass
thermal expansion
Thermal expansion is the tendency of matter to change its shape, area, volume, and density in response to a change in temperature, usually not including phase transitions.
Temperature is a monotonic function of the average molecular kinetic ...
can crack the seal.
Lamp lifetime depends primarily on the energy regime used for the particular lamp. Low energies give rise to
sputter
In physics, sputtering is a phenomenon in which microscopic particles of a solid material are ejected from its surface, after the material is itself bombarded by energetic particles of a plasma or gas. It occurs naturally in outer space, and can ...
, which can remove material from the cathode and redeposit it on the glass, creating a darkened, mirrored appearance. The life expectancy at low energies can be quite unpredictable. High energies cause wall
ablation
Ablation ( la, ablatio – removal) is removal or destruction of something from an object by vaporization, chipping, erosion, erosive processes or by other means. Examples of ablative materials are described below, and include spacecraft materi ...
, which not only gives the glass a cloudy appearance, but also weakens it structurally and releases
oxygen
Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
, affecting pressure, but at these energy levels the life expectancy can be calculated with a fair amount of accuracy.
[
Pulse duration can also affect lifetime. Very long pulses can strip large amounts of material from the cathode, depositing it on the walls. With very short pulse durations, care must be taken to ensure that the arc is centered in the lamp, far away from the glass, preventing serious wall ablation.][ External triggering is not usually recommended for short pulses.][ Simmer voltage triggering is usually used for extremely fast discharges, as are used in dye lasers, and often combine this with a "pre-pulse technique", where as a small flash is initiated just milliseconds before the main flash, to preheat the gas for a faster ]rise time In electronics, when describing a voltage or current step function, rise time is the time taken by a signal to change from a specified low value to a specified high value. These values may be expressed as ratiosSee for example , and . or, equivalen ...
.
Dye lasers sometimes use "axial pumping," which consists of a hollow, annular shaped flashlamp, with the outer envelope mirrored to reflect suitable light back to the center. The dye cell is placed in the middle, providing a more even distribution of pumping light, and more efficient transfer of energy. The hollow flashlamp also has lower inductance
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the ...
than a normal flashlamp, which provides a shorter flash discharge. Rarely, a "coaxial" design is used for dye lasers, which consists of a normal flashlamp surrounded by an annular shaped dye cell. This provides better transfer efficiency, eliminating the need for a reflector, but diffraction losses cause a lower gain.
The output spectrum of a flashlamp is primarily a product of its current density
In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional ar ...
.[ After determining the "explosion energy" for the pulse duration, (the amount of energy that will destroy it in one to ten flashes), and choosing a safe energy level for operation, the balance of voltage and capacitance can be adjusted to center the output anywhere from the near infrared to the far ultraviolet. Low current densities result from the use of very high voltage and low current.] This produces broadened spectral lines with the output centered in the near-IR, and is best for pumping infrared lasers such as Nd:YAG and erbium:YAG. Higher current densities broaden the spectral lines to the point where they begin to blend together, and continuum
Continuum may refer to:
* Continuum (measurement), theories or models that explain gradual transitions from one condition to another without abrupt changes
Mathematics
* Continuum (set theory), the real line or the corresponding cardinal number ...
emission is produced. Longer wavelengths reach saturation levels at lower current densities than shorter wavelengths, so as current is increased the output center will shift toward the visual spectrum, which is better for pumping visible light lasers, such as ruby
A ruby is a pinkish red to blood-red colored gemstone, a variety of the mineral corundum ( aluminium oxide). Ruby is one of the most popular traditional jewelry gems and is very durable. Other varieties of gem-quality corundum are called sa ...
.[ At this point, the gas becomes nearly an ideal " greybody radiator."][ Even higher current densities will produce ]blackbody radiation
Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spect ...
, centering the output in the ultraviolet.
Xenon
Xenon is a chemical element with the symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
is used extensively because of its good efficiency,[ although ]krypton
Krypton (from grc, κρυπτός, translit=kryptos 'the hidden one') is a chemical element with the symbol Kr and atomic number 36. It is a colorless, odorless, tasteless noble gas that occurs in trace amounts in the atmosphere and is often ...
is often used for pumping neodymium
Neodymium is a chemical element with the symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarnishes i ...
doped laser rods. This is because the spectral lines in the near-IR range better match the absorption lines of neodymium, giving krypton better transfer efficiency even though its overall power output is lower.[ This is especially effective with Nd:YAG, which has a narrow absorption profile. Pumped with krypton, these lasers can achieve up to twice the output power obtainable from xenon. Spectral line emission is usually chosen when pumping Nd:YAG with krypton, but since all of xenon's spectral lines miss the absorption bands of Nd:YAG, when pumping with xenon the continuum emission is used.][''Solid-state lasers: a graduate text'' by Walter Koechner, Michael Bass – Springer-Verlag 2003 Page 190]
Arc lamp pumping
Arc lamps are used for pumping rods that can support continuous operation, and can be made any size and power. Typical arc lamps operate at a voltage high enough to maintain the certain current level for which the lamp was designed to operate. This is often in the range of 10 to 50 amps. Due to their very high pressures, arc lamps require specially designed circuitry for start up, or "striking" the arc. Striking usually occurs in three phases. In the triggering phase, an extremely high voltage pulse from the "series triggering" transformer creates a spark streamer between the electrodes, but the impedance is too high for the main voltage to take over. A "boost voltage" phase is then initiated, where a voltage that is higher than the voltage drop
Voltage drop is the decrease of electrical potential along the path of a current flowing in an electrical circuit. Voltage drops in the internal resistance of the source, across conductors, across contacts, and across connectors are undesirable ...
between the electrodes is driven through the lamp, until the gas is heated to a plasma
Plasma or plasm may refer to:
Science
* Plasma (physics), one of the four fundamental states of matter
* Plasma (mineral), a green translucent silica mineral
* Quark–gluon plasma, a state of matter in quantum chromodynamics
Biology
* Blood pla ...
state. When impedance becomes low enough, the "current control" phase takes over, where the main voltage begins to drive the current to a stable level.[
Arc lamp pumping takes place in a cavity similar to a flashlamp pumped laser, with a rod and one or more lamps in a reflector cavity. The exact shape of the cavity is often dependent on how many lamps are used. The main difference is in the cooling. Arc lamps need to be cooled with water, ensuring that the water washes beyond the glass, and across the electrode connectors as well. This requires the use of ]deionized water
Purified water is water that has been mechanically filtered or processed to remove impurities and make it suitable for use. Distilled water was, formerly, the most common form of purified water, but, in recent years, water is more frequently puri ...
with a resistivity
Electrical resistivity (also called specific electrical resistance or volume resistivity) is a fundamental property of a material that measures how strongly it resists electric current. A low resistivity indicates a material that readily allows ...
of at least 200 kilohms, to keep from shorting out the circuit and corroding the electrodes through electrolysis
In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from n ...
. Water is typically channeled through a flow tube at a rate of 4 to 10 liters per minute.[
Arc lamps come in nearly all of the ]noble gas
The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low chemi ...
types, including xenon
Xenon is a chemical element with the symbol Xe and atomic number 54. It is a dense, colorless, odorless noble gas found in Earth's atmosphere in trace amounts. Although generally unreactive, it can undergo a few chemical reactions such as the ...
, krypton
Krypton (from grc, κρυπτός, translit=kryptos 'the hidden one') is a chemical element with the symbol Kr and atomic number 36. It is a colorless, odorless, tasteless noble gas that occurs in trace amounts in the atmosphere and is often ...
, argon
Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
, neon
Neon is a chemical element with the symbol Ne and atomic number 10. It is a noble gas. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypton ...
, and helium
Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
, which all emit spectral lines
A spectral line is a dark or bright line in an otherwise uniform and continuous spectrum, resulting from emission or absorption of light in a narrow frequency range, compared with the nearby frequencies. Spectral lines are often used to ident ...
that are very specific to the gas. The output spectrum of an arc lamp is mostly dependent on the gas type, being narrow band spectral lines very similar to a flashlamp operated at low current densities. The output is highest in the near infrared, and are usually used to pump infrared lasers such as Nd:YAG.
External laser pumping
A laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
of a suitable type can be used to pump another laser. The pump laser's narrow spectrum allows it to be closely matched to the absorption lines of the lasing media, giving it much more efficient energy transfer than the broadband emission of flashlamps. Diode laser
The laser diode chip removed and placed on the eye of a needle for scale
A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with e ...
s pump solid state lasers and liquid dye laser
A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 na ...
s. A ring laser
Ring lasers are composed of two beams of light of the same polarization traveling in opposite directions ("counter-rotating") in a closed loop.
Ring lasers are used most frequently as gyroscopes (ring laser gyroscope) in moving vessels like car ...
design is often used, especially in dye lasers. The ring laser uses three or more mirrors to reflect light in a circular path. This helps eliminate the standing wave
In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect ...
generated by most Fabry–Pérot resonators, leading to a better use of the gain medium's energy.
Other optical pumping methods
Microwave
Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequencies between 300 MHz and 300 GHz respectively. Different sources define different frequency ran ...
s or radiofrequency
Radio frequency (RF) is the oscillation rate of an Alternating current, alternating electric current or voltage or of a Magnetic field, magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around ...
EM radiation can be used to excite gas lasers.
A solar-pumped laser A solar-pumped laser (or solar-powered laser) is a laser that shares the same optics, optical properties as conventional lasers such as emitting a Light beam, beam consisting of Coherence (physics), coherent Electromagnetic radiation, electromagneti ...
uses solar radiation
Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument.
Solar irradiance is measured in watts per square metre (W/m ...
as a pump source.
Electrical pumping
Electric glow discharge
A glow discharge is a plasma formed by the passage of electric current through a gas. It is often created by applying a voltage between two electrodes in a glass tube containing a low-pressure gas. When the voltage exceeds a value called the stri ...
is common in gas laser
A gas laser is a laser in which an electric current is discharged through a gas to produce coherent light. The gas laser was the first continuous-light laser and the first laser to operate on the principle of converting electrical energy to a lase ...
s. For example, in the helium–neon laser
A helium–neon laser or He-Ne laser, is a type of gas laser whose high energetic medium gain medium consists of a mixture of 10:1 ratio of helium and neon at a total pressure of about 1 torr inside of a small electrical discharge. The best ...
the electrons from the discharge collide with the helium
Helium (from el, ἥλιος, helios, lit=sun) is a chemical element with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert, monatomic gas and the first in the noble gas group in the periodic table. ...
atoms, exciting them. The excited helium atoms then collide with neon
Neon is a chemical element with the symbol Ne and atomic number 10. It is a noble gas. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with about two-thirds the density of air. It was discovered (along with krypton ...
atoms, transferring energy. This allows an inverse population of neon atoms to build up.
Electric current
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
is typically used to pump laser diode
file:Laser diode chip.jpg, The laser diode chip removed and placed on the eye of a needle for scale
A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a di ...
s and semiconductor crystal lasers (for example germanium)
Electron beam
Cathode rays or electron beam (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to ele ...
s pump free electron laser
A free-electron laser (FEL) is a (fourth generation) light source producing extremely brilliant and short pulses of radiation. An FEL functions and behaves in many ways like a laser, but instead of using stimulated emission from atomic or molecula ...
s and some excimer laser
An excimer laser, sometimes more correctly called an exciplex laser, is a form of ultraviolet laser which is commonly used in the production of microelectronic devices, semiconductor based integrated circuits or "chips", eye surgery, and microm ...
s.
Gas dynamic pumping
Gas dynamic laser
A gas dynamic laser (GDL) is a laser based on differences in relaxation velocities of molecular vibrational states. The lasing medium gas has such properties that an energetically lower vibrational state relaxes faster than a higher vibrational st ...
s are constructed using the supersonic
Supersonic speed is the speed of an object that exceeds the speed of sound ( Mach 1). For objects traveling in dry air of a temperature of 20 °C (68 °F) at sea level, this speed is approximately . Speeds greater than five times ...
flow of gases, such as carbon dioxide
Carbon dioxide (chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is transpar ...
, to excite the molecules past threshold. The gas is pressurized and then heated to as high as 1400 kelvin
The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phys ...
s. The gas is then allowed to expand rapidly through specially shaped nozzles to a very low pressure. This expansion occurs at supersonic velocities, sometimes as high as mach 4. The hot gas has many molecules in the upper excited states, while many more are in the lower states. The rapid expansion causes adiabatic cooling
In thermodynamics, an adiabatic process (Greek: ''adiábatos'', "impassable") is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, ...
, which reduces the temperature to as low as 300 K. This reduction in temperature causes the molecules in the upper and lower states to relax their equilibrium to a value that is more appropriate for the lower temperature. However, the molecules in the lower states relax very quickly, while the upper state molecules take much longer to relax. Since a good quantity of molecules remain in the upper state, a population inversion is created, which often extends for quite a distance downstream. Continuous wave outputs as high as 100 kilowatts have been obtained from dynamic carbon dioxide lasers.
Similar methods of supersonic expansion are used to adiabatically cool carbon monoxide
Carbon monoxide (chemical formula CO) is a colorless, poisonous, odorless, tasteless, flammable gas that is slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simple ...
lasers, which are then pumped either through chemical reaction, electrical, or radio frequency
Radio frequency (RF) is the oscillation rate of an alternating electric current or voltage or of a magnetic, electric or electromagnetic field or mechanical system in the frequency range from around to around . This is roughly between the upp ...
pumping. The adiabatic cooling replaces bulky and costly cryogenic
In physics, cryogenics is the production and behaviour of materials at very low temperatures.
The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cr ...
cooling with liquid nitrogen, increasing the carbon monoxide laser's efficiency. Lasers of this type have been able to produce outputs as high as a gigawatt, with efficiencies as high as 60%.
Other types
Charge-displacement self-channeling can give rise to high energy concentration along a column created and maintained by the ponderomotive expulsion of electrons. The channel will also columnate shorter wavelength secondary radiation and ultimately extremely short wavelength lasing.
Chemical reaction
A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
is used as a power source in chemical laser
A chemical laser is a laser that obtains its energy from a chemical reaction. Chemical lasers can reach continuous wave output with power reaching to megawatt levels. They are used in industry for cutting and drilling.
Common examples of chemical ...
s. This allows for very high output powers difficult to reach by other means.
Nuclear fission
Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radio ...
is used in exotic nuclear pumped laser
A nuclear pumped laser is a laser pumped with the energy of fission fragments. The lasing medium is enclosed in a tube lined with uranium-235 and subjected to high neutron flux in a nuclear reactor core. The fission fragments of the uranium crea ...
s (NPL), directly employing the energy of the fast neutrons released in a nuclear reactor
A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
.
The United States military tested an X-ray laser
An X-ray laser is a device that uses stimulated emission to generate or amplify electromagnetic radiation in the near X-ray or extreme ultraviolet region of the spectrum, that is, usually on the order of several tens of nanometers (nm) wavelength ...
pumped by a nuclear weapon
A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb), producing a nuclear explosion. Both bom ...
in the 1980s, but the results of the test were inconclusive and it has not been repeated.
See also
*Laser construction
A laser is constructed from three principal parts:
*An energy source (usually referred to as the '' pump'' or ''pump source''),
*A ''gain medium'' or ''laser medium'', and
*Two or more mirrors that form an ''optical resonator''.
Pump source
The ...
References
{{reflist, colwidth=30em
Pumping