HOME

TheInfoList



OR:

Laser absorption spectrometry (LAS) refers to techniques that use
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fir ...
s to assess the concentration or amount of a
species In biology, a species is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriate s ...
in gas phase by
absorption spectrometry Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating f ...
(AS). Optical spectroscopic techniques in general, and laser-based techniques in particular, have a great potential for detection and monitoring of constituents in
gas phase In the outline of physical science, physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, ref ...
. They combine a number of important properties, e.g. a high sensitivity and a high selectivity with non-intrusive and
remote sensing Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Earth ...
capabilities. Laser absorption spectrometry has become the foremost used technique for quantitative assessments of
atoms Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, an ...
and
molecules A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
in gas phase. It is also a widely used technique for a variety of other applications, e.g. within the field of optical frequency
metrology Metrology is the scientific study of measurement. It establishes a common understanding of units, crucial in linking human activities. Modern metrology has its roots in the French Revolution's political motivation to standardise units in Fran ...
or in studies of light matter interactions. The most common technique is
tunable diode laser absorption spectroscopy Tunable diode laser absorption spectroscopy (TDLAS, sometimes referred to as TDLS, TLS or TLAS) is a technique for measuring the concentration of certain species such as methane, water vapor and many more, in a gaseous mixture using tunable diode l ...
(TDLAS) which has become commercialized and is used for a variety of applications.


Direct laser absorption spectrometry

The most appealing advantages of LAS is its ability to provide absolute quantitative assessments of species. Its biggest disadvantage is that it relies on a measurement of a small change in power from a high level; any
noise Noise is unwanted sound considered unpleasant, loud or disruptive to hearing. From a physics standpoint, there is no distinction between noise and desired sound, as both are vibrations through a medium, such as air or water. The difference arise ...
introduced by the light source or the transmission through the optical system will deteriorate the sensitivity of the technique. Direct laser absorption spectrometric (DLAS) techniques are therefore often limited to detection of absorbance ~10−3, which is far away from the theoretical
shot noise Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process. In electronics shot noise originates from the discrete nature of electric charge. Shot noise also occurs in photon counting in optical devices, where shot ...
level, which for a single pass DAS technique is in the 10−7 – 10−8 range. This detection limit is insufficient for many types of applications. The detection limit can be improved by (1) reducing the noise, (2) using transitions with larger transition strengths or (3) increasing the effective path length. The first can be achieved by the use of a
modulation In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the ''carrier signal'', with a separate signal called the ''modulation signal'' that typically contains informatio ...
technique, the second can be obtained by using transitions in unconventional
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tro ...
regions, whereas the third by using external cavities.


Modulated techniques

Modulation techniques make use of the fact that technical noise usually decreases with increasing frequency (often referred to as a 1/f noise) and improves on the signal contrast by encoding and detecting the absorption signal at a
high frequency High frequency (HF) is the ITU designation for the range of radio frequency electromagnetic waves (radio waves) between 3 and 30 megahertz (MHz). It is also known as the decameter band or decameter wave as its wavelengths range from one to ten ...
, where the noise level is low. The most common modulation techniques, wavelength modulation spectroscopy (WMS) and frequency modulation spectroscopy (FMS), achieve this by rapidly scanning the frequency of the light across the absorbing transition. Both techniques have the advantage that the demodulated signal is low in the absence of absorbers but they are also limited by residual amplitude modulation, either from the laser or from multiple reflections in the optical system ( etalon effects). The most frequently used laser-based technique for environmental investigations and
process control An industrial process control in continuous production processes is a discipline that uses industrial control systems to achieve a production level of consistency, economy and safety which could not be achieved purely by human manual control. I ...
applications is based upon diode lasers and WMS (typically referred to as TDLAS). The typical sensitivity of WMS and FMS techniques is in the 10−5 range. Due to their good tunability and long lifetime (> 10,000 hours), most practical laser-based absorption spectroscopy is performed today by distributed feedback diode lasers emitting in the 760  nm – 16 μm range. This gives rise to systems that can run unattended for thousands of hours with minimum maintenance.


Laser absorption spectrometry using fundamental vibrational or electronic transitions

The second way of improving the detection limit of LAS is to employ transitions with larger line strength, either in the fundamental vibrational band or electronic transitions. The former, which normally reside at ~5 μm, have line strengths that are ~2–3 orders of magnitude higher than those of typical overtone transition. On the other hand, electronic transitions have often yet another 1–2 orders of magnitude larger line strengths. The transitions strengths for the electronic transitions of NO, which are located in the UV range (at ~227 nm) are ~2 orders of magnitude larger than those in the MIR region. The recent development of quantum cascade (QC) lasers working in the MIR region has opened up new possibilities for sensitive detection of
molecular A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
species on their fundamental vibrational bands. It is more difficult to generate stable cw light addressing electronic transitions, since these often lie in the UV region.


Cavity enhanced absorption spectrometry

The third way of improving the sensitivity of LAS is to increase the path length. This can be obtained by placing the species inside a cavity in which the light bounces back and forth many times, whereby the interaction length can be increased considerably. This has led to a group of techniques denoted as cavity enhanced AS (CEAS). The cavity can either be placed inside the laser, giving rise to intracavity AS, or outside, when it is referred to as an external cavity. Although the former technique can provide a high sensitivity, its practical applicability is limited by non-linear processes. External cavities can either be of multi-pass type, i.e. Herriott or White cells, or be of resonant type, most often working as a Fabry–Pérot (FP) etalon. Whereas the multi-pass cells typically can provide an enhanced interaction length of up to ~2 orders of magnitude, the resonant cavities can provide a much larger path length enhancement, in the order of the finesse of the cavity, ''F'', which for a balanced cavity with high reflecting mirrors with reflectivities of ~99.99–99.999% can be ~104 to 105. A problem with resonant cavities is that a high finesse cavity has narrow cavity modes, often in the low
kHz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that on ...
range. Since cw lasers often have free-running line-widths in the MHz range, and pulsed even larger, it is difficult to couple laser light effectively into a high finesse cavity. However, there are a few ways this can be achieved. One such method is
Vernier Spectroscopy Vernier spectroscopy is a type of cavity enhanced laser absorption spectroscopy that is especially sensitive to trace gases. The method uses a frequency comb laser combined with a high finesse optical cavity to produce an absorption spectrum in a ...
, which employs a frequency comb laser to excite many cavity modes simultaneously and allows for a highly parallel measurement of
trace gases Trace gases are gases that are present in small amounts within an environment such as a planet's atmosphere. Trace gases in Earth's atmosphere are gases other than nitrogen (78.1%), oxygen (20.9%), and argon (0.934%) which, in combination, make u ...
.


Cavity ring-down spectroscopy

In
cavity ring-down spectroscopy Cavity ring-down spectroscopy (CRDS) is a highly sensitive optical spectroscopic technique that enables measurement of absolute optical extinction by samples that scatter and absorb light. It has been widely used to study gaseous samples which ab ...
(CRDS) the mode-matching condition is circumvented by injecting a short light pulse in the cavity. The absorbance is assessed by comparing the cavity decay times of the pulse as it "leaks out" of the cavity on and off-resonance, respectively. While independent of laser amplitude noise, this technique is often limited by drifts in the system between two consecutive measurements and a low transmission through the cavity. Despite this, sensitivities in the ~10−7 range can routinely be obtained (although the most complex setups can reach below this~10−9). CRDS has therefore started to become a standard technique for sensitive trace gas analysis under a variety of conditions. In addition, CRDS is now an effective method for different physical parameters (such as temperature, pressure, strain) sensing.


Integrated cavity output spectroscopy

Integrated cavity output spectroscopy (ICOS) sometimes called as cavity-enhanced absorption spectroscopy (CEAS) records the integrated intensity behind one of the cavity mirrors, while the laser is repeatedly swept across one or several cavity modes. However, for high finesse cavities the ratio of "on" and "off" a cavity mode is small, given by the inverse of the finesse, whereby the transmission as well as the integrated absorption becomes small. Off-axis ICOS (OA-ICOS) improves on this by coupling the laser light into the cavity from an angle with respect to the main axis so as to not interact with a high density of transverse modes. Although intensity fluctuations are lower than direct on-axis ICOS, the technique is, however, still limited by a low transmission and intensity fluctuations due to partly excitation of high order transverse modes, and can again typically reach sensitivities ~10−7 .


Continuous wave cavity enhanced absorption spectrometry

The group of CEAS techniques that has the largest potential to improve is that based on a continuous coupling of laser light into the cavity. This requires however an active locking of the laser to one of the cavity modes. There are two ways in which this can be done, either by optical or electronic
feedback Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to ''feed back'' into itself. The notion of cause-and-effect has to be handled ...
. Optical feedback (OF) locking, originally developed by Romanini et al. for cw-CRDS, uses the optical feedback from the cavity to lock the laser to the cavity while the laser is slowly scanned across the profile (OF-CEAS). In this case, the cavity needs to have a V-shape in order to avoid OF from the incoupling mirror. OF-CEAS is capable of reaching sensitivities ~10−8 range, limited by a fluctuating feedback efficiency. Electronic locking is usually realized with the Pound-Drever-Hall (PDH) technique, and is nowadays a well established technique, although it can be difficult to achieve for some types of lasers. It has been shown by that also electronically locked CEAS can be used for sensitive AS on overtone lines.


Noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy

However, all attempts to directly combine CEAS with a locking approach (DCEAS) have one thing in common; they do not manage to use the full power of the cavity, i.e. to reach LODs close to the (multi-pass) shot-noise level, which is roughly 2''F''/π times below that of DAS and can be down to ~10−13. The reason is twofold: (i) any remaining frequency noise of the laser relative to the cavity mode will, due to the narrow cavity mode, be directly converted to amplitude noise in the transmitted light, thereby impairing the sensitivity; and (ii) none of these techniques makes use of any modulation technique, wherefore they still suffer from the 1/f noise in the system. There is, however, one technique that so far has succeeded in making full use of the cavity by combining locked CEAS with FMS so as to circumvent both of these problems: Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy ( NICE-OHMS). The first and so far ultimate realization of this technique, performed for frequency standard applications, reached an astonishing LODs of 5•10−13 (1•10−14 cm−1). It is clear that this technique, correctly developed, has a larger potential than any other technique for trace gas analysis.A. Foltynowicz, F. M. Schmidt, W. Ma, and O. Axner, "Noise-immune cavity-enhanced optical heterodyne molecular spectrometry: Current status and future potential", ''Applied Physics B'' 92, 313–326 (2008).


References


External links

* Zeller, W.; Naehle, L.; Fuchs, P.; Gerschuetz, F.; Hildebrandt, L.; Koeth, J
DFB Lasers Between 760 nm and 16 µm for Sensing Applications.
Sensors 2010, 10, 2492-2510. MDPI {{lasers Absorption spectroscopy