HOME

TheInfoList



OR:

In
vector calculus Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space \mathbb^3. The term "vector calculus" is sometimes used as a synonym for the broader subject ...
, a Laplacian vector field is a vector field which is both
irrotational In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of any path between two points does not c ...
and
incompressible In fluid mechanics or more generally continuum mechanics, incompressible flow ( isochoric flow) refers to a flow in which the material density is constant within a fluid parcel—an infinitesimal volume that moves with the flow velocity. An eq ...
. If the field is denoted as v, then it is described by the following
differential equations In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
: :\begin \nabla \times \mathbf &= \mathbf, \\ \nabla \cdot \mathbf &= 0. \end From the
vector calculus identity The following are important identities involving derivatives and integrals in vector calculus. Operator notation Gradient For a function f(x, y, z) in three-dimensional Cartesian coordinate variables, the gradient is the vector field: \o ...
\nabla^2 \mathbf \equiv \nabla (\nabla\cdot \mathbf) - \nabla\times (\nabla\times \mathbf) it follows that :\nabla^2 \mathbf = 0 that is, that the field v satisfies
Laplace's equation In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \nab ...
. However, the converse is not true; not every vector field that satisfies Laplace's equation is a Laplacian vector field, which can be a point of confusion. For example, the vector field = (xy, yz, zx) satisfies Laplace's equation, but it has both nonzero divergence and nonzero curl and is not a Laplacian vector field. A Laplacian vector field in the plane satisfies the
Cauchy–Riemann equations In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which, together with certain continuity and differ ...
: it is
holomorphic In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivativ ...
. Since the
curl cURL (pronounced like "curl", UK: , US: ) is a computer software project providing a library (libcurl) and command-line tool (curl) for transferring data using various network protocols. The name stands for "Client URL". History cURL was fi ...
of v is zero, it follows that (when the domain of definition is simply connected) v can be expressed as the
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gradi ...
of a
scalar potential In mathematical physics, scalar potential, simply stated, describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in trav ...
(see
irrotational field In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of any path between two points does not ...
) ''φ'' : : \mathbf = \nabla \phi. \qquad \qquad (1) Then, since the
divergence In vector calculus, divergence is a vector operator that operates on a vector field, producing a scalar field giving the quantity of the vector field's source at each point. More technically, the divergence represents the volume density of the ...
of v is also zero, it follows from equation (1) that : \nabla \cdot \nabla \phi = 0 which is equivalent to : \nabla^2 \phi = 0. Therefore, the potential of a Laplacian field satisfies
Laplace's equation In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as \nabla^2\! f = 0 or \Delta f = 0, where \Delta = \nab ...
.


See also

*
Potential flow In fluid dynamics, potential flow (or ideal flow) describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field, which is a valid appr ...
*
Harmonic function In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f: U \to \mathbb R, where is an open subset of that satisfies Laplace's equation, that is, : \f ...
Vector calculus {{Mathanalysis-stub