K562 Cells
   HOME

TheInfoList



OR:

K562 cells were the first human immortalised myelogenous
leukemia Leukemia ( also spelled leukaemia and pronounced ) is a group of blood cancers that usually begin in the bone marrow and result in high numbers of abnormal blood cells. These blood cells are not fully developed and are called ''blasts'' or ' ...
cell line An immortalised cell line is a population of cells from a multicellular organism which would normally not proliferate indefinitely but, due to mutation, have evaded normal cellular senescence and instead can keep undergoing division. The cell ...
to be established. K562 cells are of the erythroleukemia type, and the cell line is derived from a 53-year-old female
chronic myelogenous leukemia Chronic myelogenous leukemia (CML), also known as chronic myeloid leukemia, is a cancer of the white blood cells. It is a form of leukemia characterized by the increased and unregulated growth of myeloid cells in the bone marrow and the accumulat ...
patient in blast crisis. The cells are non-adherent and rounded, are positive for the bcr:abl
fusion gene A fusion gene is a hybrid gene formed from two previously independent genes. It can occur as a result of translocation, interstitial deletion, or chromosomal inversion. Fusion genes have been found to be prevalent in all main types of human neopla ...
, and bear some proteomic resemblance to both undifferentiated
granulocytes Granulocytes are cells in the innate immune system characterized by the presence of specific granules in their cytoplasm. Such granules distinguish them from the various agranulocytes. All myeloblastic granulocytes are polymorphonuclear. They hav ...
and
erythrocytes Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek ''erythros'' for "red" and ''kytos'' for "holl ...
. In culture they exhibit much less clumping than many other suspension lines, presumably due to the
downregulation In the biological context of organisms' production of gene products, downregulation is the process by which a cell decreases the quantity of a cellular component, such as RNA or protein, in response to an external stimulus. The complementary proc ...
of surface adhesion molecules by bcr:abl. However, another study suggests that bcr:abl over-expression may actually increase cell adherence to cell culture plastic. K562 cells can spontaneously develop characteristics similar to early-stage
erythrocytes Red blood cells (RBCs), also referred to as red cells, red blood corpuscles (in humans or other animals not having nucleus in red blood cells), haematids, erythroid cells or erythrocytes (from Greek ''erythros'' for "red" and ''kytos'' for "holl ...
,
granulocytes Granulocytes are cells in the innate immune system characterized by the presence of specific granules in their cytoplasm. Such granules distinguish them from the various agranulocytes. All myeloblastic granulocytes are polymorphonuclear. They hav ...
and
monocytes Monocytes are a type of leukocyte or white blood cell. They are the largest type of leukocyte in blood and can differentiate into macrophages and conventional dendritic cells. As a part of the vertebrate innate immune system monocytes also infl ...
and are easily killed by
natural killer cells Natural killer cells, also known as NK cells or large granular lymphocytes (LGL), are a type of cytotoxic lymphocyte critical to the innate immune system that belong to the rapidly expanding family of known innate lymphoid cells (ILC) and represen ...
as they lack the MHC complex required to inhibit NK activity. They also lack any trace of Epstein-Barr virus and other herpesviruses. In addition to the
Philadelphia chromosome The Philadelphia chromosome or Philadelphia translocation (Ph) is a specific genetic abnormality in chromosome 22 of leukemia cancer cells (particularly chronic myeloid leukemia (CML) cells). This chromosome is defective and unusually short becaus ...
they also exhibit a second reciprocal translocation between the long arm of
chromosome 15 Chromosome 15 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 15 spans about 102 million base pairs (the building material of DNA) and represents between 3% and 3.5% of the total DNA ...
with
chromosome 17 Chromosome 17 is one of the 23 pairs of chromosomes in humans. People normally have two copies of this chromosome. Chromosome 17 spans more than 83 million base pairs (the building material of DNA) and represents between 2.5 and 3% of the total D ...
. Two sub-lines are available which express MHC class-I A2 and A3. K562 cells are part of the
NCI-60 The NCI-60 cancer cell line panel is a group of 60 human cancer cell lines used by the National Cancer Institute (NCI) for the screening of compounds to detect potential anticancer activity. Purpose The screening procedure is called the NCI-60 ...
cancer cell line panel used by the
National Cancer Institute The National Cancer Institute (NCI) coordinates the United States National Cancer Program and is part of the National Institutes of Health (NIH), which is one of eleven agencies that are part of the U.S. Department of Health and Human Services. ...
.


K562 cell cycle and regulation

Many factors and components play a role in the cell cycle of K562 cells in terms of growth, cell differentiation, and apoptosis. The growth of these leukemic cells are controlled by either initiating cell differentiation or apoptosis to occur. Cell differentiation is induced by the deacetylase activity in these “undifferentiated progenitor cells,” which alters the phenotype and morphology of the K562 cells. The change in phenotype induces a decrease in the growth rate and leads the K562 cells to the terminal path of becoming mature erythroids, monocytes, and mature macrophages. These changes can also drive the leukemic cells to a state of stress, which allows for increased sensitivity of the cells to drugs that initiate apoptosis. The problem with K562 cells, and many other cancer cell types, is an overabundance of Aurora kinases. These kinases play a role in the formation of spindles, separation of chromosomes, as well as cytokinesis. These functions are necessary in cells in order to divide and regenerate tissues, and play a maintenance role in homeostatic functions. However, the overabundance of Aurora kinases allows for uncontrolled cellular division, resulting in cancer. Inhibiting these is an important regulation mechanism of cancer, because it prevents cells from progressing into mitosis. Apoptosis is an important mechanism in regulating K562 cells and can be induced by the changes in the metabolic state of the cells. There are many different cellular components involved in the cycle of apoptosis such as BCR/ABL, Bcl-2, Bax protein, and cytochrome C. The tumor suppressor gene p53 is also important in the cell cycle regulation of K562 cells. This gene targets the cyclin-dependent kinase inhibitor, p21, and causes cell differentiation, cell cycle arrest in G1, and ultimately apoptosis. When the levels of these components are thrown off, they can either no longer inhibit apoptosis of the cancer cells, a role fulfilled by BCR/ABL, or they cause apoptosis to be induced, in the same vein as Bax and cytochrome C. These components are key in the mitochondria, and due to this, it has been supported that apoptosis uses the mitochondrial apoptosis pathway. The offset of these cellular components from their balance point causes morphological changes, which result in the K562 cells being arrested in the G2/M phase of the cell cycle. This arrest leads to “shrinkage, blebbing, nuclear fragmentation, chromatin condensing” and other morphological changes that cause the cell to program death at this point. The ability to induce these changes in K562 cell cycle and cell cycle regulation provides targets for cancer drugs. One of these drugs is Imatinib, which inhibits BCR/ABL causing growth to cease and apoptosis to begin. Another important group of regulators of the K562 line are Sirtuins, referred to as SIRTS. These play a role in cellular stress, metabolism, and autophagy, by interacting with deacetylases activity in the cell. Other methods being focused on in the regulation of K562 cells include therapeutic methods like polyphyllin D, which caused differentiation from the progenitor state to occur, and for apoptosis to begin.


External links

*
Cellosaurus entry for K562


References

{{Reflist Human cell lines