Kronecker Jugendtraum
   HOME

TheInfoList



OR:

Kronecker's Jugendtraum or Hilbert's twelfth problem, of the 23 mathematical
Hilbert problems Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics. Hilbert presented ten of the pro ...
, is the extension of the
Kronecker–Weber theorem In algebraic number theory, it can be shown that every cyclotomic field is an abelian extension of the rational number field Q, having Galois group of the form (\mathbb Z/n\mathbb Z)^\times. The Kronecker–Weber theorem provides a partial conve ...
on
abelian extension In abstract algebra, an abelian extension is a Galois extension whose Galois group is abelian. When the Galois group is also cyclic, the extension is also called a cyclic extension. Going in the other direction, a Galois extension is called solvabl ...
s of the
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ration ...
s, to any base
number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a f ...
. That is, it asks for analogues of the
roots of unity In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in ...
, as complex numbers that are particular values of the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
; the requirement is that such numbers should generate a whole family of further number fields that are analogues of the
cyclotomic field In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of th ...
s and their subfields. The classical theory of
complex multiplication In mathematics, complex multiplication (CM) is the theory of elliptic curves ''E'' that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible wh ...
, now often known as the ''Kronecker Jugendtraum'', does this for the case of any
imaginary quadratic field In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 ...
, by using modular functions and
elliptic function In the mathematical field of complex analysis, elliptic functions are a special kind of meromorphic functions, that satisfy two periodicity conditions. They are named elliptic functions because they come from elliptic integrals. Originally those in ...
s chosen with a particular
period lattice In mathematics, a fundamental pair of periods is an ordered pair of complex numbers that define a lattice in the complex plane. This type of lattice is the underlying object with which elliptic functions and modular forms are defined. Definition ...
related to the field in question.
Goro Shimura was a Japanese mathematician and Michael Henry Strater Professor Emeritus of Mathematics at Princeton University who worked in number theory, automorphic forms, and arithmetic geometry. He was known for developing the theory of complex multipli ...
extended this to
CM field In mathematics, a CM-field is a particular type of number field, so named for a close connection to the theory of complex multiplication. Another name used is J-field. The abbreviation "CM" was introduced by . Formal definition A number field ''K ...
s. In the special case of totally real fields, a solution was given by Dasgupta and Kakde. This provides an effective method to construct the maximal abelian extension of any totally real field. The method rests on p-adic integration and the solution it provides for totally real fields is different in nature from what Hilbert had in mind in his original formulation. A solution in the more special case of totally real quadratic fields, also resting on p-adic methods, was given by Darmon, Pozzi and Vonk. The general case of Hilbert's 12th Problem is still open .
Leopold Kronecker Leopold Kronecker (; 7 December 1823 – 29 December 1891) was a German mathematician who worked on number theory, algebra and logic. He criticized Georg Cantor's work on set theory, and was quoted by as having said, "'" ("God made the integers, ...
described the complex multiplication issue as his ' or “dearest dream of his youth”.


Description of the problem

The fundamental problem of
algebraic number theory Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic ob ...
is to describe the fields of algebraic numbers. The work of Galois made it clear that field extensions are controlled by certain
groups A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
, the
Galois group In mathematics, in the area of abstract algebra known as Galois theory, the Galois group of a certain type of field extension is a specific group associated with the field extension. The study of field extensions and their relationship to the pol ...
s. The simplest situation, which is already at the boundary of what is well-understood, is when the group in question is abelian. All quadratic extensions, obtained by adjoining the roots of a quadratic polynomial, are abelian, and their study was commenced by
Gauss Johann Carl Friedrich Gauss (; german: Gauß ; la, Carolus Fridericus Gauss; 30 April 177723 February 1855) was a German mathematician and physicist who made significant contributions to many fields in mathematics and science. Sometimes refer ...
. Another type of abelian extension of the field Q of
rational numbers In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
is given by adjoining the ''n''th roots of unity, resulting in the
cyclotomic field In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of th ...
s. Already Gauss had shown that, in fact, every
quadratic field In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 a ...
is contained in a larger cyclotomic field. The
Kronecker–Weber theorem In algebraic number theory, it can be shown that every cyclotomic field is an abelian extension of the rational number field Q, having Galois group of the form (\mathbb Z/n\mathbb Z)^\times. The Kronecker–Weber theorem provides a partial conve ...
shows that any finite abelian extension of Q is contained in a cyclotomic field. Kronecker's (and Hilbert's) question addresses the situation of a more general algebraic number field K: what are the algebraic numbers necessary to construct all abelian extensions of K? The complete answer to this question has been completely worked out only when K is an
imaginary quadratic field In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 ...
or its generalization, a
CM-field In mathematics, a CM-field is a particular type of number field, so named for a close connection to the theory of complex multiplication. Another name used is J-field. The abbreviation "CM" was introduced by . Formal definition A number field '' ...
. Hilbert's original statement of his 12th problem is rather misleading: he seems to imply that the abelian extensions of imaginary quadratic fields are generated by special values of elliptic modular functions, which is not correct. (It is hard to tell exactly what Hilbert was saying, one problem being that he may have been using the term "elliptic function" to mean both the elliptic function ℘ and the elliptic modular function ''j''.) First it is also necessary to use roots of unity, though Hilbert may have implicitly meant to include these. More seriously, while values of elliptic modular functions generate the
Hilbert class field In algebraic number theory, the Hilbert class field ''E'' of a number field ''K'' is the Maximal abelian extension, maximal abelian unramified extension of ''K''. Its degree over ''K'' equals the class number of ''K'' and the Galois group of ''E'' ...
, for more general abelian extensions one also needs to use values of elliptic functions. For example, the abelian extension \mathbf(i,\sqrt /\mathbf(i) is not generated by singular moduli and roots of unity. One particularly appealing way to state the Kronecker–Weber theorem is by saying that the maximal abelian extension of Q can be obtained by adjoining the special values exp(2''i''/''n'') of the
exponential function The exponential function is a mathematical function denoted by f(x)=\exp(x) or e^x (where the argument is written as an exponent). Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, a ...
. Similarly, the theory of
complex multiplication In mathematics, complex multiplication (CM) is the theory of elliptic curves ''E'' that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible wh ...
shows that the maximal abelian extension of Q(''τ''), where ''τ'' is an imaginary quadratic irrationality, can be obtained by adjoining the special values of ℘(''τ'',''z'') and ''j''(''τ'') of
modular function In mathematics, a modular form is a (complex) analytic function on the upper half-plane satisfying a certain kind of functional equation with respect to the group action of the modular group, and also satisfying a growth condition. The theory of ...
s ''j'' and elliptic functions ℘, and roots of unity, where ''τ'' is in the imaginary quadratic field and ''z'' represents a torsion point on the corresponding elliptic curve. One interpretation of Hilbert's twelfth problem asks to provide a suitable analogue of exponential, elliptic, or modular functions, whose special values would generate the maximal abelian extension Kab of a general number field K. In this form, it remains unsolved. A description of the field Kab was obtained in the
class field theory In mathematics, class field theory (CFT) is the fundamental branch of algebraic number theory whose goal is to describe all the abelian Galois extensions of local and global fields using objects associated to the ground field. Hilbert is credit ...
, developed by
Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many ...
himself,
Emil Artin Emil Artin (; March 3, 1898 – December 20, 1962) was an Austrian mathematician of Armenian descent. Artin was one of the leading mathematicians of the twentieth century. He is best known for his work on algebraic number theory, contributing lar ...
, and others in the first half of the 20th century.In particular,
Teiji Takagi Teiji Takagi (高木 貞治 ''Takagi Teiji'', April 21, 1875 – February 28, 1960) was a Japanese mathematician, best known for proving the Takagi existence theorem in class field theory. The Blancmange curve, the graph of a nowhere-differentiabl ...
proved the existence of the absolute abelian extension as the well-known
Takagi existence theorem {{short description, Correspondence between finite abelian extensions and generalized ideal class groups In class field theory, the Takagi existence theorem states that for any number field ''K'' there is a one-to-one inclusion reversing correspond ...
.
However the construction of Kab in class field theory involves first constructing larger non-abelian extensions using
Kummer theory In abstract algebra and number theory, Kummer theory provides a description of certain types of field extensions involving the adjunction of ''n''th roots of elements of the base field. The theory was originally developed by Ernst Eduard Kummer ar ...
, and then cutting down to the abelian extensions, so does not really solve Hilbert's problem which asks for a more direct construction of the abelian extensions.


Modern developments

Developments since around 1960 have certainly contributed. Before that in his dissertation used Hilbert modular forms to study abelian extensions of
real quadratic field In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 ...
s. Complex multiplication of abelian varieties was an area opened up by the work of Shimura and
Taniyama is a Japanese surname. Notable people with the surname include: * Kishō Taniyama (born 1975), Japanese voice actor * Yutaka Taniyama (1927–1958), Japanese mathematician Fictional characters: *Mai Taniyama, fictional character in ''Ghost Hunt'' ...
. This gives rise to abelian extensions of
CM-field In mathematics, a CM-field is a particular type of number field, so named for a close connection to the theory of complex multiplication. Another name used is J-field. The abbreviation "CM" was introduced by . Formal definition A number field '' ...
s in general. The question of which extensions can be found is that of the
Tate module In mathematics, a Tate module of an abelian group, named for John Tate, is a module constructed from an abelian group ''A''. Often, this construction is made in the following situation: ''G'' is a commutative group scheme over a field ''K'', ...
s of such varieties, as
Galois representation In mathematics, a Galois module is a ''G''-module, with ''G'' being the Galois group of some extension of fields. The term Galois representation is frequently used when the ''G''-module is a vector space over a field or a free module over a ring ...
s. Since this is the most accessible case of ℓ-adic cohomology, these representations have been studied in depth.
Robert Langlands Robert Phelan Langlands, (; born October 6, 1936) is a Canadian mathematician. He is best known as the founder of the Langlands program, a vast web of conjectures and results connecting representation theory and automorphic forms to the study o ...
argued in 1973 that the modern version of the ' should deal with
Hasse–Weil zeta function In mathematics, the Hasse–Weil zeta function attached to an algebraic variety ''V'' defined over an algebraic number field ''K'' is a meromorphic function on the complex plane defined in terms of the number of points on the variety after reduc ...
s of
Shimura varieties In number theory, a Shimura variety is a higher-dimensional analogue of a modular curve that arises as a quotient variety of a Hermitian symmetric space by a congruence subgroup of a reductive algebraic group defined over Q. Shimura varieties are no ...
. While he envisaged a grandiose program that would take the subject much further, more than thirty years later serious doubts remain concerning its import for the question that Hilbert asked. A separate development was Stark's conjecture (
Harold Stark Harold Mead Stark (born August 6, 1939 in Los Angeles, California) is an American mathematician, specializing in number theory. He is best known for his solution of the Gauss class number 1 problem, in effect correcting and completing the earl ...
), which in contrast dealt directly with the question of finding interesting, particular units in number fields. This has seen a large conjectural development for
L-function In mathematics, an ''L''-function is a meromorphic function on the complex plane, associated to one out of several categories of mathematical objects. An ''L''-series is a Dirichlet series, usually convergent on a half-plane, that may give ris ...
s, and is also capable of producing concrete, numerical results. A p-adic solution for totally real fields was announced by Dasgupta and Kakde, and for the special case of real quadratic fields by Darmon, Pozzi and Vonk, in March 2021.


Notes


References

* * * {{Hilbert's problems Algebraic number theory Conjectures #12