Kirillov Orbit Method
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the orbit method (also known as the Kirillov theory, the method of coadjoint orbits and by a few similar names) establishes a correspondence between irreducible unitary representations of a
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
and its
coadjoint orbit In mathematics, the coadjoint representation K of a Lie group G is the dual of the adjoint representation. If \mathfrak denotes the Lie algebra of G, the corresponding action of G on \mathfrak^*, the dual space to \mathfrak, is called the coadjoint ...
s: orbits of the action of the group on the dual space of its
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
. The theory was introduced by for nilpotent groups and later extended by Bertram Kostant, Louis Auslander,
Lajos Pukánszky Lajos Pukánszky (1928-1996) was a Hungarian and American mathematician noted for his work in representation theory of solvable Lie groups. He was born in Budapest on November 24, 1928, defended his thesis in 1955 at the University of Szeged under ...
and others to the case of solvable groups. Roger Howe found a version of the orbit method that applies to ''p''-adic Lie groups.
David Vogan David Alexander Vogan, Jr. (born September 8, 1954) is a mathematician at the Massachusetts Institute of Technology who works on unitary representations of simple Lie groups. While studying at the University of Chicago, he became a Putnam Fellow ...
proposed that the orbit method should serve as a unifying principle in the description of the unitary duals of real reductive Lie groups.


Relation with symplectic geometry

One of the key observations of Kirillov was that coadjoint orbits of a Lie group ''G'' have natural structure of
symplectic manifold In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sympl ...
s whose symplectic structure is invariant under ''G''. If an orbit is the
phase space In dynamical system theory, a phase space is a space in which all possible states of a system are represented, with each possible state corresponding to one unique point in the phase space. For mechanical systems, the phase space usually ...
of a ''G''-invariant classical mechanical system then the corresponding quantum mechanical system ought to be described via an irreducible unitary representation of ''G''. Geometric invariants of the orbit translate into algebraic invariants of the corresponding representation. In this way the orbit method may be viewed as a precise mathematical manifestation of a vague physical principle of quantization. In the case of a nilpotent group ''G'' the correspondence involves all orbits, but for a general ''G'' additional restrictions on the orbit are necessary (polarizability, integrality, Pukánszky condition). This point of view has been significantly advanced by Kostant in his theory of geometric quantization of coadjoint orbits.


Kirillov character formula

For a
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
G, the
Kirillov orbit method In mathematics, the orbit method (also known as the Kirillov theory, the method of coadjoint orbits and by a few similar names) establishes a correspondence between irreducible unitary representations of a Lie group and its coadjoint orbits: orbit ...
gives a heuristic method in representation theory. It connects the
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
s of
coadjoint orbit In mathematics, the coadjoint representation K of a Lie group G is the dual of the adjoint representation. If \mathfrak denotes the Lie algebra of G, the corresponding action of G on \mathfrak^*, the dual space to \mathfrak, is called the coadjoint ...
s, which lie in the
dual space In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by const ...
of the
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
of ''G'', to the infinitesimal characters of the
irreducible representation In mathematics, specifically in the representation theory of groups and algebras, an irreducible representation (\rho, V) or irrep of an algebraic structure A is a nonzero representation that has no proper nontrivial subrepresentation (\rho, _W,W ...
s. The method got its name after the Russian mathematician
Alexandre Kirillov Alexandre Aleksandrovich Kirillov (russian: Алекса́ндр Алекса́ндрович Кири́ллов, born 1936) is a Soviet and Russian mathematician, known for his works in the fields of representation theory, topological groups a ...
. At its simplest, it states that a character of a Lie group may be given by the
Fourier transform A Fourier transform (FT) is a mathematical transform that decomposes functions into frequency components, which are represented by the output of the transform as a function of frequency. Most commonly functions of time or space are transformed, ...
of the
Dirac delta function In mathematics, the Dirac delta distribution ( distribution), also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire ...
support Support may refer to: Arts, entertainment, and media * Supporting character Business and finance * Support (technical analysis) * Child support * Customer support * Income Support Construction * Support (structure), or lateral support, a ...
ed on the coadjoint orbits, weighted by the square-root of the
Jacobian In mathematics, a Jacobian, named for Carl Gustav Jacob Jacobi, may refer to: *Jacobian matrix and determinant *Jacobian elliptic functions *Jacobian variety *Intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähler m ...
of the exponential map, denoted by j. It does not apply to all Lie groups, but works for a number of classes of connected Lie groups, including nilpotent, some semisimple groups, and compact groups.


Special cases


Nilpotent group case

Let ''G'' be a connected,
simply connected In topology, a topological space is called simply connected (or 1-connected, or 1-simply connected) if it is path-connected and every path between two points can be continuously transformed (intuitively for embedded spaces, staying within the spac ...
nilpotent
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
. Kirillov proved that the equivalence classes of
irreducible In philosophy, systems theory, science, and art, emergence occurs when an entity is observed to have properties its parts do not have on their own, properties or behaviors that emerge only when the parts interact in a wider whole. Emergence ...
unitary representations of ''G'' are parametrized by the ''coadjoint orbits'' of ''G'', that is the orbits of the action ''G'' on the dual space \mathfrak^* of its Lie algebra. The Kirillov character formula expresses the Harish-Chandra character of the representation as a certain integral over the corresponding orbit.


Compact Lie group case

Complex irreducible representations of compact Lie groups have been completely classified. They are always finite-dimensional, unitarizable (i.e. admit an invariant positive definite Hermitian form) and are parametrized by their highest weights, which are precisely the dominant integral weights for the group. If ''G'' is a compact semisimple Lie group with a Cartan subalgebra ''h'' then its coadjoint orbits are
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
and each of them intersects the positive Weyl chamber ''h''*+ in a single point. An orbit is integral if this point belongs to the weight lattice of ''G''. The highest weight theory can be restated in the form of a bijection between the set of integral coadjoint orbits and the set of equivalence classes of irreducible unitary representations of ''G'': the highest weight representation ''L''(''λ'') with highest weight ''λ''∈''h''*+ corresponds to the integral coadjoint orbit ''G''·''λ''. The Kirillov character formula amounts to the character formula earlier proved by Harish-Chandra.


See also

* Dixmier mapping * Pukánszky condition


References

* * * * * . * * {{citation, last=Kirillov, first=A. A., title=Lectures on the orbit method, series=
Graduate Studies in Mathematics Graduate Studies in Mathematics (GSM) is a series of graduate-level textbooks in mathematics published by the American Mathematical Society (AMS). The books in this series are published ihardcoverane-bookformats. List of books *1 ''The General To ...
, volume=64, publisher=American Mathematical Society, location=Providence, RI, year=2004, isbn=978-0-8218-3530-2. Representation theory of Lie groups