Kepler 186f
   HOME

TheInfoList



OR:

Kepler-186f (also known by its Kepler object of interest designation KOI-571.05) is an
exoplanet An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917 but was not recognized as such. The first confirmation of detection occurred in 1992. A different planet, init ...
orbiting the
red dwarf ''Red Dwarf'' is a British science fiction comedy franchise created by Rob Grant and Doug Naylor, which primarily consists of a television sitcom that aired on BBC Two between 1988 and 1999, and on Dave since 2009, gaining a cult following. T ...
Kepler-186, about from Earth. Distance to Kepler 186, after taking into account light extinction
/ref> It was the first planet with a radius similar to Earth's to be discovered in the habitable zone of another star. NASA's Kepler space telescope detected it using the transit method, along with four additional planets orbiting much closer to the star (all modestly larger than Earth). Analysis of three years of data was required to find its signal. The results were presented initially at a conference on 19 March 2014 See session 19 March 2014 – Wednesday 11:50–12:10 – Thomas Barclay: The first Earth-sized habitable zone exoplanets. and some details were reported in the media at the time. The public announcement was on 17 April 2014, followed by publication in '' Science''.


Physical characteristics


Mass, radius and temperature

The only physical property directly derivable from the observations (besides orbit) is the size of the planet relative to the central star, which follows from the amount of occultation of stellar light during a transit. This ratio was measured to be 0.021, giving a planetary radius of 1.11±0.14 times that of Earth. The planet is about 11% larger in radius than Earth (between 4.5% smaller and 26.5% larger), giving a volume about 1.37 times that of Earth (between 0.87 and 2.03 times as large). A very wide range of possible masses can be calculated by combining the radius with densities derived from the possible types of matter from which planets can be made. For example, it could be a rocky terrestrial planet or a lower density ocean planet with a thick atmosphere. A massive hydrogen/ helium (H/He) atmosphere is thought to be unlikely in a planet with a radius below 1.5 . Planets with a radius of more than 1.5 times that of Earth tend to accumulate the thick atmospheres which make them less likely to be habitable. Red dwarfs emit a much stronger extreme ultraviolet (XUV) flux when young than later in life. The planet's primordial atmosphere would have been subjected to elevated photoevaporation during that period, which would probably have largely removed any H/He-rich envelope through hydrodynamic mass loss. Mass estimates range from 0.32 for a pure water/ice composition to 3.77 if made up entirely of iron (both implausible extremes). For a body with radius 1.11 , a composition similar to that of Earth (i.e., 1/3 iron, 2/3 silicate rock) yields a mass of 1.44 , taking into account the higher density due to the higher average pressure compared to Earth. That would make the force of gravity on the surface 17% higher than on Earth. The estimated equilibrium temperature for Kepler-186f, which is the surface temperature without an atmosphere, is said to be around , somewhat colder than the equilibrium temperature of Mars.


Host star

The planet orbits Kepler-186, an M-type
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
which has a total of five known planets. The star has a mass of 0.54 and a radius of 0.52 . It has a temperature of 3755 K and is about 4 billion years old, about 600 million years younger than the Sun, which is 4.6 billion years old and has a temperature of . The star's apparent magnitude, or how bright it appears from Earth's perspective, is 14.62. This is too dim to be seen with the naked eye, which can only see objects with a magnitude up to at least 6.5 – 7 or lower.


Orbit

Kepler-186f orbits its star with about 5% of the Sun's luminosity with an orbital period of 129.9 days and an orbital radius of about 0.40 times that of Earth's (compared to for
Mercury Mercury commonly refers to: * Mercury (planet), the nearest planet to the Sun * Mercury (element), a metallic chemical element with the symbol Hg * Mercury (mythology), a Roman god Mercury or The Mercury may also refer to: Companies * Merc ...
). The habitable zone for this system is estimated conservatively to extend over distances receiving from 88% to 25% of Earth's illumination (from ). Kepler-186f receives about 32%, placing it within the conservative zone but near the outer edge, similar to the position of Mars in our planetary system.


Habitability

Kepler-186f's location within the habitable zone does not ensure it is habitable; this is also dependent on its atmospheric characteristics, which are unknown. However, Kepler-186f is too distant for its atmosphere to be analyzed by existing telescopes (e.g.,
NESSI The New Mexico Exoplanet Spectroscopic Survey Instrument (NESSI) is a ground-based near-infrared spectrographic system specifically designed to study the atmospheres of exoplanets. The NESSI instrument was mounted in 2014 on a 2.4 meter telescope ...
) or next-generation instruments such as the
James Webb Space Telescope The James Webb Space Telescope (JWST) is a space telescope which conducts infrared astronomy. As the largest optical telescope in space, its high resolution and sensitivity allow it to view objects too old, distant, or faint for the Hubble Spa ...
. A simple climate model – in which the planet's inventory of volatiles is restricted to nitrogen, carbon dioxide and water, and clouds are not accounted for – suggests that the planet's surface temperature would be above if at least 0.5 to 5 bars of CO2 is present in its atmosphere, for assumed N2 partial pressures ranging from 10 bar to zero, respectively. The star hosts four other planets discovered so far, although Kepler-186 b, c, d, and e (in order of increasing orbital radius), being too close to their star, are considered too hot to have liquid water. The four innermost planets are probably tidally locked, but Kepler-186f is in a higher orbit, where the star's tidal effects are much weaker, so the time could have been insufficient for its spin to slow down significantly. Because of the very slow evolution of red dwarfs, the age of the Kepler-186 system was poorly constrained, although it is likely to be greater than a few billion years. Recent results have placed the age at around 4 billion years. The chance that it is tidally locked is approximately 50%. Since it is closer to its star than Earth is to the Sun, it will probably rotate much more slowly than Earth; its day could be weeks or months long (see Tidal effects on rotation rate, axial tilt and orbit). Kepler-186f's axial tilt (obliquity) is likely very small, in which case it would not have tilt-induced seasons like Earth's. Its orbit is probably close to circular, so it will also lack eccentricity-induced seasonal changes like those of Mars. However, the axial tilt could be larger (about 23 degrees) if another undetected non-transiting planet orbits between it and Kepler-186e; planetary formation simulations have shown that the presence of at least one additional planet in this region is likely. If such a planet exists, it cannot be much more massive than Earth as it would then cause orbital instabilities. One review essay in 2015 concluded that Kepler-186f, along with the exoplanets Kepler-442b and Kepler-62f, were likely the best candidates for being potentially habitable planets. In June 2018, studies suggest that Kepler-186f may have seasons and a climate similar to those on Earth.


Follow-up studies


Target of SETI investigation

As part of the SETI Institute's
search for extraterrestrial intelligence The search for extraterrestrial intelligence (SETI) is a collective term for scientific searches for intelligent extraterrestrial life, for example, monitoring electromagnetic radiation for signs of transmissions from civilizations on other pl ...
, the
Allen Telescope Array The Allen Telescope Array (ATA), formerly known as the One Hectare Telescope (1hT), is a radio telescope array dedicated to astronomical observations and a simultaneous search for extraterrestrial intelligence (SETI). The array is situated at th ...
had listened for radio emissions from the Kepler-186 system for about a month as of 17 April 2014. No signals attributable to extraterrestrial technology were found in that interval; however, to be detectable, such transmissions, if radiated in all directions equally and thus not preferentially towards the Earth, would need to be at least 10 times as strong as those from
Arecibo Observatory The Arecibo Observatory, also known as the National Astronomy and Ionosphere Center (NAIC) and formerly known as the Arecibo Ionosphere Observatory, is an observatory in Barrio Esperanza, Arecibo, Puerto Rico owned by the US National Science F ...
. Another search, undertaken at the
crowdsourcing Crowdsourcing involves a large group of dispersed participants contributing or producing goods or services—including ideas, votes, micro-tasks, and finances—for payment or as volunteers. Contemporary crowdsourcing often involves digita ...
project SETI-Live, reports inconclusive but optimistic-looking signs in the radio noise from the Allen Array observations. The more well known SETI @ Home search does not cover any object in the Kepler field of view.See the fourth question at Another follow-up survey using the Green Bank Telescope has not reviewed Kepler 186f. Given the interstellar distance of , the signals would have left the planet many years ago.


Future technology

At approximately distant, Kepler-186f is too far and its star too faint for current telescopes or the next generation of planned telescopes to determine its mass or whether it has an atmosphere. However, the discovery of Kepler-186f demonstrates conclusively that there are other Earth-sized planets in habitable zones. The Kepler spacecraft focused on a single small region of the sky but next-generation planet-hunting space telescopes, such as TESS and CHEOPS, will examine nearby stars throughout the sky. Nearby stars with planets can then be studied by the
James Webb Space Telescope The James Webb Space Telescope (JWST) is a space telescope which conducts infrared astronomy. As the largest optical telescope in space, its high resolution and sensitivity allow it to view objects too old, distant, or faint for the Hubble Spa ...
and future large ground-based telescopes to analyze atmospheres, determine masses and infer compositions. Additionally the Square Kilometer Array would significantly improve radio observations over the
Arecibo Observatory The Arecibo Observatory, also known as the National Astronomy and Ionosphere Center (NAIC) and formerly known as the Arecibo Ionosphere Observatory, is an observatory in Barrio Esperanza, Arecibo, Puerto Rico owned by the US National Science F ...
and Green Bank Telescope.


Previous names

As the Kepler telescope observational campaign proceeded, an initially identified system was entered in the Kepler Input Catalog (KIC), and then progressed as a candidate host of planets to a Kepler Object of Interest (KOI). Thus,
Kepler 186 Kepler-186 is a main-sequence M1-type dwarf star, located 178.5 parsecs (582 light years) away in the constellation of Cygnus. The star is slightly cooler than the sun, with roughly half its metallicity. It is known to have five plan ...
started as ''KIC 8120608'' and then was identified as ''KOI 571''. Kepler 186f was mentioned when known as KOI-571-05 or KOI-571.05 or using similar nomenclatures in 2013 in various discussions and publications before its full confirmation. See comment by "Holger 16 November 2013 at 14:21".
^
^
^


Comparison

The nearest-to-Earth-size planet in a habitable zone previously known was Kepler-62f with 1.4 Earth radii. Kepler-186f orbits an M-dwarf star, while Kepler-62f orbits a K-type star. A study of atmospheric evolution in Earth-size planets in habitable zones of G-Stars (a class containing the Sun, but not Kepler-186) suggested that 0.8–1.15 R🜨 is the size range for planets small enough to lose their initial accreted hydrogen envelope but large enough to retain an outgassed secondary atmosphere such as Earth's.


In popular culture

* Along with five other exoplanets, Kepler-186f was included in '' Civilization: Beyond Earth''s exoplanet DLC as a playable map. * Dutch rock band named their 2017 album ''Kepler-186f'' after this exoplanet.; *Kepler-186f is the location of a future earth colony in the short story "Stars" by
Drew Hayden Taylor Drew Hayden Taylor (born 1 July 1962) is a Canadian playwright, author and journalist. Life and career Born in Curve Lake, Ontario, Taylor is part Ojibwe and part Caucasian. About his background Taylor says: "I plan to start my own nation. Be ...
.


See also

* Habitability of red dwarf systems * List of potentially habitable exoplanets * Lists of astronomical objects


Notes


References


External links


NASA – Mission overview

NASA – Kepler Discoveries – Summary Table

NASA – Kepler-186f
at The NASA Exoplanet Archive.
NASA – Kepler-186f
at The Exoplanet Data Explorer.
NASA – Kepler-186f
at
The Extrasolar Planets Encyclopaedia The Extrasolar Planets Encyclopaedia is an astronomy website, founded in Paris, France at the Meudon Observatory by Jean Schneider in February 1995, which maintains a database of all the currently known and candidate extrasolar planets, with ...
.
Habitable Exolanets Catalog
at UPR-Arecibo.
NASA – Kepler 186f – SETI Institute – A Planet in the Habitable Zone (video)
2014.
NASA – NASA Press kit
{{Sky, 19, 54, 36.651, +, 43, 57, 18.06, 492 186f Exoplanets discovered in 2014 Exoplanets in the habitable zone Kepler-186 Transiting exoplanets Near-Earth-sized exoplanets in the habitable zone Cygnus (constellation)