Karl Fischer Titration
   HOME

TheInfoList



OR:

Karl Fischer titration is a classic
titration Titration (also known as titrimetry and volumetric analysis) is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte (a substance to be analyzed). A reagent, termed the ''titrant'' ...
method in
chemical analysis Analytical chemistry studies and uses instruments and methods to separate, identify, and quantify matter. In practice, separation, identification or quantification may constitute the entire analysis or be combined with another method. Separati ...
that uses coulometric or
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
tric titration to determine trace amounts of
water Water (chemical formula ) is an Inorganic compound, inorganic, transparent, tasteless, odorless, and Color of water, nearly colorless chemical substance, which is the main constituent of Earth's hydrosphere and the fluids of all known living ...
in a sample. It was invented in 1935 by the German chemist Karl Fischer. Today, the titration is done with an automated Karl Fischer titrator.


Chemical principle

The elementary reaction responsible for water quantification in the Karl Fischer titration is oxidation of sulfur dioxide with iodine: : 2 H2O + SO2 + I2 → H2SO4 + 2 HI This elementary reaction consumes exactly one molar equivalent of water vs. iodine. Iodine is added to the solution until it is present in excess, marking the end point of the titration, which can be detected by potentiometry. The reaction is run in an alcohol solution containing a base, which consumes the sulfur trioxide and
hydroiodic acid Hydroiodic acid (or hydriodic acid) is an aqueous solution of hydrogen iodide (HI). It is a strong acid, one that is ionized completely in an aqueous solution. It is colorless. Concentrated solutions are usually 48% to 57% HI. Reactions Hy ...
produced.


Coulometric titration

The main compartment of the titration cell contains the
anode An anode is an electrode of a polarized electrical device through which conventional current enters the device. This contrasts with a cathode, an electrode of the device through which conventional current leaves the device. A common mnemonic ...
solution plus the analyte. The anode solution consists of an alcohol (ROH), a base (B), SO2 and KI. Typical alcohols that may be used include
ethanol Ethanol (abbr. EtOH; also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is an organic compound. It is an alcohol with the chemical formula . Its formula can be also written as or (an ethyl group linked to a ...
, diethylene glycol monoethyl ether, or methanol, sometimes referred to as Karl Fischer grade. A common base is
imidazole Imidazole (ImH) is an organic compound with the formula C3N2H4. It is a white or colourless solid that is soluble in water, producing a mildly alkaline solution. In chemistry, it is an aromatic heterocycle, classified as a diazole, and has non-a ...
. The titration cell also consists of a smaller compartment with a
cathode A cathode is the electrode from which a conventional current leaves a polarized electrical device. This definition can be recalled by using the mnemonic ''CCD'' for ''Cathode Current Departs''. A conventional current describes the direction in wh ...
immersed in the anode solution of the main compartment. The two compartments are separated by an ion-permeable membrane. The Pt anode generates I2 from the KI when current is provided through the electric circuit. The net reaction as shown below is oxidation of SO2 by I2. One mole of I2 is consumed for each mole of H2O. In other words, 2 moles of electrons are consumed per mole of water. : 2 I → I2 + 2 e : B·I2 + B·SO2 + B + H2O → 2 BH+I + BSO3 : BSO3 + ROH → BHRSO4 The end point is detected most commonly by a
bipotentiometric titration Potentiometric titration is a technique similar to direct titration of a redox reaction. It is a useful means of characterizing an acid. No indicator is used; instead the potential is measured across the analyte, typically an electrolyte solution. ...
method. A second pair of Pt electrodes is immersed in the anode solution. The detector circuit maintains a constant current between the two detector electrodes during titration. Prior to the equivalence point, the solution contains I but little I2. At the equivalence point, excess I2 appears and an abrupt voltage drop marks the end point. The amount of charge needed to generate I2 and reach the end point can then be used to calculate the amount of water in the original sample.


Volumetric titration

The volumetric titration is based on the same principles as the coulometric titration, except that the anode solution above now is used as the titrant solution. The titrant consists of an alcohol (ROH), base (B), SO2 and a known concentration of I2.
Pyridine Pyridine is a basic heterocyclic organic compound with the chemical formula . It is structurally related to benzene, with one methine group replaced by a nitrogen atom. It is a highly flammable, weakly alkaline, water-miscible liquid with a ...
has been used as the base in this case. One mole of I2 is consumed for each mole of H2O. The titration reaction proceeds as above, and the end point may be detected by a bipotentiometric method as described above.


Disadvantages and advantages

The popularity of the Karl Fischer titration (henceforth referred to as KF) is due in large part to several practical advantages that it holds over other methods of moisture determination, such as accuracy, speed and selectivity. KF is selective for water, because the titration reaction itself consumes water. In contrast, measurement of mass loss on drying will detect the loss of ''any'' volatile substance. However, the strong redox chemistry (SO2/I2) means that redox-active sample constituents may react with the reagents. For this reason, KF is unsuitable for solutions containing e.g. dimethyl sulfoxide. KF has a high accuracy and precision, typically within 1% of available water, e.g. 3.00% appears as 2.97–3.03%. Although KF is a destructive analysis, the sample quantity is small and is typically limited by the accuracy of weighing. For example, in order to obtain an accuracy of 1% using a scale with the typical accuracy of 0.2 mg, the sample must contain 20 mg water, which is e.g. 200 mg for a sample with 10% water. For coulometers, the measuring range is from 1–5 ppm to about 5%. Volumetric KF readily measures samples up to 100%, but requires impractically large amounts of sample for analytes with less than 0.05% water. The KF response is linear. Therefore, single-point calibration using a calibrated 1% water standard is sufficient and no calibration curves are necessary. Little sample preparation is needed: a liquid sample can usually be directly injected using a syringe. The analysis is typically complete within a minute. However, KF suffers from an error called ''drift'', which is an apparent water input that can confuse the measurement. The glass walls of the vessel adsorb water, and if any water leaks into the cell, the slow release of water into the titration solution can continue for a long time. Therefore, before measurement, it is necessary to carefully dry the vessel and run a 10–30-minute "dry run" in order to calculate the rate of drift. The drift is then subtracted from the result. KF is suitable for measuring liquids and, with special equipment, gases. The major disadvantage with solids is that the water has to be accessible and easily brought into methanol solution. Many common substances, especially foods such as chocolate, release water slowly and with difficulty, requiring additional efforts to reliably bring the total water content into contact with the Karl Fischer reagents. For example, a high-shear mixer may be installed to the cell in order to break the sample. KF has problems with compounds with strong binding to water, as in water of hydration, for example with
lithium chloride Lithium chloride is a chemical compound with the formula Li Cl. The salt is a typical ionic compound (with certain covalent characteristics), although the small size of the Li+ ion gives rise to properties not seen for other alkali metal chlorid ...
, so KF is unsuitable for the special solvent LiCl/
DMAc DMAC, D-MAC, or D-Mac may refer to: People * Donovan McNabb (born 1976), a quarterback for the Washington Redskins, formally of the Philadelphia Eagles * Darren McFadden (born 1987), a running back formerly of the University of Arkansas Razorback ...
. KF is suitable for automation. Generally, KF is conducted using a separate KF titrator, or for volumetric titration, a KF titration cell installed into a general-purpose titrator. There are also oven attachments that can be used for materials that have problems being analyzed normally in the cell. The important aspect about the oven attachment is that the material doesn't decompose into water when heated to release the water. The oven attachment also supports automation of samples. Using volumetric titration with visual detection of a titration endpoint is also possible with coloured samples by UV/VIS spectrophotometric detection.Tavčar, E., Turk, E., Kreft, S. (2012)
Simple Modification of Karl-Fischer Titration Method for Determination of Water Content in Colored Samples
Journal of Analytical Methods in Chemistry, Vol. 2012, Article ID 379724.


See also

*
Titration Titration (also known as titrimetry and volumetric analysis) is a common laboratory method of quantitative chemical analysis to determine the concentration of an identified analyte (a substance to be analyzed). A reagent, termed the ''titrant'' ...
*
Moisture analysis Moisture is the presence of a liquid, especially water, often in trace amounts. Small amounts of water may be found, for example, in the air (humidity), in foods, and in some commercial products. Moisture also refers to the amount of water vapo ...


Literature

*Water determination by Karl Fischer Titration by Peter A. Bruttel, Regina Schlink, Metrohm AG


References

{{reflist


External links


EMD Chemicals AQUASTAR Tech Notes
Titration German inventions of the Nazi period