In
mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, K-theory is, roughly speaking, the study of a
ring generated by
vector bundles
In mathematics, a vector bundle is a topological construction that makes precise the idea of a family of vector spaces parameterized by another space X (for example X could be a topological space, a manifold, or an algebraic variety): to every po ...
over a
topological space
In mathematics, a topological space is, roughly speaking, a Geometry, geometrical space in which Closeness (mathematics), closeness is defined but cannot necessarily be measured by a numeric Distance (mathematics), distance. More specifically, a to ...
or
scheme. In
algebraic topology
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariant (mathematics), invariants that classification theorem, classify topological spaces up t ...
, it is a
cohomology theory known as
topological K-theory
In mathematics, topological -theory is a branch of algebraic topology. It was founded to study vector bundles on topological spaces, by means of ideas now recognised as (general) K-theory that were introduced by Alexander Grothendieck. The early ...
. In
algebra
Algebra is a branch of mathematics that deals with abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic ope ...
and
algebraic geometry
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometry, geometrical problems. Classically, it studies zero of a function, zeros of multivariate polynomials; th ...
, it is referred to as
algebraic K-theory. It is also a fundamental tool in the field of
operator algebra
In functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings.
The results obtained in the study o ...
s. It can be seen as the study of certain kinds of
invariants of large
matrices
Matrix (: matrices or matrixes) or MATRIX may refer to:
Science and mathematics
* Matrix (mathematics), a rectangular array of numbers, symbols or expressions
* Matrix (logic), part of a formula in prenex normal form
* Matrix (biology), the ...
.
K-theory involves the construction of families of ''K''-
functor
In mathematics, specifically category theory, a functor is a Map (mathematics), mapping between Category (mathematics), categories. Functors were first considered in algebraic topology, where algebraic objects (such as the fundamental group) ar ...
s that map from topological spaces or schemes, or to be even more general: any object of a homotopy category to associated rings; these rings reflect some aspects of the structure of the original spaces or schemes. As with functors to
groups in algebraic topology, the reason for this functorial mapping is that it is easier to compute some topological properties from the mapped rings than from the original spaces or schemes. Examples of results gleaned from the K-theory approach include the
Grothendieck–Riemann–Roch theorem,
Bott periodicity, the
Atiyah–Singer index theorem, and the
Adams operation In mathematics, an Adams operation, denoted ψ''k'' for natural numbers ''k'', is a cohomology operation in topological K-theory, or any allied operation in algebraic K-theory or other types of algebraic construction, defined on a pattern introd ...
s.
In
high energy physics
Particle physics or high-energy physics is the study of fundamental particles and forces that constitute matter and radiation. The field also studies combinations of elementary particles up to the scale of protons and neutrons, while the stu ...
, K-theory and in particular
twisted K-theory have appeared in
Type II string theory
In theoretical physics, type II string theory is a unified term that includes both type IIA strings and type IIB strings theories. Type II string theory accounts for two of the five consistent superstring theories in ten dimensions. Both theorie ...
where it has been conjectured that they classify
D-branes
In string theory, D-branes, short for Dirichlet membrane, are a class of extended objects upon which open string (physics), strings can end with Dirichlet boundary conditions, after which they are named.
D-branes are typically classified by their ...
,
Ramond–Ramond field strengths and also certain
spinors
In geometry and physics, spinors (pronounced "spinner" IPA ) are elements of a complex numbers, complex vector space that can be associated with Euclidean space. A spinor transforms linearly when the Euclidean space is subjected to a slight (infi ...
on
generalized complex manifolds. In
condensed matter physics
Condensed matter physics is the field of physics that deals with the macroscopic and microscopic physical properties of matter, especially the solid and liquid State of matter, phases, that arise from electromagnetic forces between atoms and elec ...
K-theory has been used to classify
topological insulators,
superconductors and stable
Fermi surfaces. For more details, see
K-theory (physics)
In string theory, K-theory classification refers to a conjectured application of K-theory (in abstract algebra and algebraic topology) to superstrings, to classify the allowed Ramond–Ramond field strengths as well as the charges of stable D-bra ...
.
Grothendieck completion
The Grothendieck completion of an
abelian monoid
In abstract algebra, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being .
Monoids are semigroups with identity ...
into an abelian group is a necessary ingredient for defining K-theory since all definitions start by constructing an abelian monoid from a suitable category and turning it into an abelian group through this universal construction. Given an abelian monoid
let
be the relation on
defined by
:
if there exists a
such that
Then, the set
has the structure of a
group where:
:
Equivalence classes in this group should be thought of as formal differences of elements in the abelian monoid. This group
is also associated with a monoid homomorphism
given by
which has a
certain universal property.
To get a better understanding of this group, consider some
equivalence class
In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es of the abelian monoid
. Here we will denote the identity element of
by
so that