thermodynamic cycle
A thermodynamic cycle consists of a linked sequence of thermodynamic processes that involve transfer of heat and work into and out of the system, while varying pressure, temperature, and other state variables within the system, and that eventu ...
that describes the operation of certain heat engines that have air or some other gas as their working fluid. The original Brayton engines used a piston compressor and piston expander, but modern
gas turbine
A gas turbine, also called a combustion turbine, is a type of continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part (known as the gas generator or core) and are, in the directio ...
engines and
airbreathing jet engine
An airbreathing jet engine (or ''ducted jet engine'') is a jet engine that ejects a propelling (reaction) jet of hot exhaust gases after first taking in atmospheric air, followed by compression, heating and expansion back to atmospheric pressure ...
s also follow the Brayton cycle. Although the cycle is usually run as an open system (and indeed must be run as such if
internal combustion
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal comb ...
is used), it is conventionally assumed for the purposes of
thermodynamic
Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of t ...
analysis that the exhaust gases are reused in the intake, enabling analysis as a closed system.
The engine cycle is named after George Brayton (1830–1892), the American
engineer
Engineers, as practitioners of engineering, are professionals who invent, design, analyze, build and test machines, complex systems, structures, gadgets and materials to fulfill functional objectives and requirements while considering the l ...
who developed it originally for use in piston engines, although it was originally proposed and patented by Englishman
John Barber John Barber may refer to:
Politics
*John Barber (Lord Mayor of London) (died 1741), Jacobite printer, Lord Mayor of London in 1732
*John Barber, represented Tryon County in the North Carolina General Assembly of 1777
* John Roaf Barber (1841–1917 ...
in 1791. It is also sometimes known as the Joule cycle. The reversed Joule cycle uses an external heat source and incorporates the use of a regenerator. One type of Brayton cycle is open to the atmosphere and uses an internal
combustion chamber
A combustion chamber is part of an internal combustion engine in which the fuel/air mix is burned. For steam engines, the term has also been used for an extension of the firebox which is used to allow a more complete combustion process.
Intern ...
; and another type is closed and uses a heat exchanger.
History
In 1872, George Brayton applied for a patent for his "Ready Motor", a reciprocating heat engine operating on a gas power cycle. The engine was a two-stroke and produced power on every revolution. Brayton engines used a separate piston compressor and piston expander, with compressed air heated by internal fire as it entered the expander cylinder. The first versions of the Brayton engine were vapor engines which mixed fuel with air as it entered the compressor by means of a heated-surface carburetor. The fuel / air was contained in a reservoir / tank and then it was admitted to the expansion cylinder and burned. As the fuel/air mixture entered the expansion cylinder, it was ignited by a pilot flame. A screen was used to prevent the fire from entering or returning to the reservoir. In early versions of the engine, this screen sometimes failed and an explosion would occur. In 1874, Brayton solved the explosion problem by adding the fuel just prior to the expander cylinder. The engine now used heavier fuels such as kerosene and fuel oil. Ignition remained a pilot flame. Brayton produced and sold "Ready Motors" to perform a variety of tasks like water pumping, mill operation, running generators, and marine propulsion. The "Ready Motors" were produced from 1872 to sometime in the 1880s; several hundred such motors were likely produced during this time period. Brayton licensed the design to Simone in the UK. Many variations of the layout were used; some were single-acting and some were double-acting. Some had under walking beams; others had overhead walking beams. Both horizontal and vertical models were built. Sizes ranged from less than one to over 40 horsepower. Critics of the time claimed the engines ran smoothly and had a reasonable efficiency.
Brayton-cycle engines were some of the first internal combustion engines used for motive power. In 1875, John Holland used a Brayton engine to power the world's first self-propelled submarine (Holland boat #1). In 1879, a Brayton engine was used to power a second submarine, the '' Fenian Ram''. John Philip Holland's submarines are preserved in the Paterson Museum in the Old Great Falls Historic District of
Paterson, New Jersey
Paterson ( ) is the largest city in and the county seat of Passaic County, in the U.S. state of New Jersey.
In 1878, George B. Selden patented the first internal combustion automobile. Inspired by the
internal combustion engine
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal co ...
invented by Brayton displayed at the Centennial Exposition in Philadelphia in 1876, Selden patented a four-wheel car working on a smaller, lighter, multicylinder version. He then filed a series of amendments to his application which stretched out the legal process, resulting in a delay of 16 years before the patent was granted on November 5, 1895. In 1903, Selden sued Ford for patent infringement and
Henry Ford
Henry Ford (July 30, 1863 – April 7, 1947) was an American Technological and industrial history of the United States, industrialist, business magnate, founder of the Ford Motor Company, and chief developer of the assembly line technique of ...
fought the Selden patent until 1911. Selden had never actually produced a working car, so during the trial, two machines were constructed according to the patent drawings. Ford argued his cars used the four-stroke Alphonse Beau de Rochas cycle or
Otto cycle
An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine. It is the thermodynamic cycle most commonly found in automobile engines.
The Otto cycle is a description of what ha ...
and not the Brayton-cycle engine used in the Selden auto. Ford won the appeal of the original case.
In 1887, Brayton developed and patented a four-stroke direct-injection oil engine. The fuel system used a variable-quantity pump and liquid-fuel, high-pressure, spray-type injection. The liquid was forced through a spring-loaded, relief-type valve (injector) which caused the fuel to become divided into small droplets. Injection was timed to occur at or near the peak of the compression stroke. A platinum igniter provided the source of ignition. Brayton describes the invention as: “I have discovered that heavy oils can be mechanically converted into a finely divided condition within a firing portion of the cylinder, or in a communicating firing chamber.” Another part reads, “I have for the first time, so far as my knowledge extends, regulated speed by variably controlling the direct discharge of liquid fuel into the combustion chamber or cylinder into a finely divided condition highly favorable to immediate combustion.” This was likely the first engine to use a lean-burn system to regulate engine speed and output. In this manner, the engine fired on every power stroke and speed and output were controlled solely by the quantity of fuel injected.
In 1890, Brayton developed and patented a four-stroke, air-blast oil engine. The fuel system delivered a variable quantity of vaporized fuel to the center of the cylinder under pressure at or near the peak of the compression stroke. The ignition source was an igniter made from platinum wire. A variable-quantity injection pump provided the fuel to an injector where it was mixed with air as it entered the cylinder. A small crank-driven compressor provided the source for air. This engine also used the lean-burn system.
Rudolf Diesel originally proposed a very high compression, constant-temperature cycle where the heat of compression would exceed the heat of combustion, but after several years of experiments, he realized that the constant-temperature cycle would not work in a piston engine. Early Diesel engines use an air blast system which was pioneered by Brayton in 1890. Consequently, these early engines use the constant-pressure cycle.
File:Brayton Gas engine 1872.jpg, Brayton gas engine 1872
File:Brayton walking beam engine 1872.jpg, Brayton walking beam engine 1872
File:Brayton engine 1875.jpg, Brayton engine 1875
File:Brayton double acting constant pressure engine cut away 1877.jpg, Brayton double-acting constant-pressure engine cut away 1877
File:Brayton 4 stroke air blast engine 1889.jpg, Brayton four-stroke air blast engine 1889
File:Brayton 4 stroke air blast engine 1890.jpg, Brayton four-stroke air blast engine 1890
Early gas turbine history
* 1791 First patent for a gas turbine (John Barber, United Kingdom)
* 1904 Unsuccessful gas turbine project by Franz Stolze in Berlin (first axial compressor)
* 1906 Gas turbine by Armengaud Lemale in France (centrifugal compressor, no useful power)
* 1910 First gas turbine featuring intermittent combustion (Holzwarth, 150 kW, constant volume combustion)
* 1923 First exhaust-gas turbocharger to increase the power of diesel engines
* 1939 World's first gas turbine for power generation by
Brown-Boveri
Brown, Boveri & Cie. (Brown, Boveri & Company; BBC) was a Swiss group of electrical engineering companies.
It was founded in Zürich, in 1891 by Charles Eugene Lancelot Brown and Walter Boveri who worked at the Maschinenfabrik Oerlikon. In 1970 ...
, Neuchâtel, Switzerland
(velox burner, aerodynamics by Stodola)
Models
A Brayton-type
engine
An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.
Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power ...
consists of three components: a compressor, a mixing chamber, and an expander.
Modern Brayton engines are almost always a turbine type, although Brayton only made piston engines.
In the original 19th-century Brayton engine, ambient air is drawn into a piston compressor, where it is compressed; ideally an isentropic process. The compressed air then passes through a mixing chamber where fuel is added, an
isobaric process
In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: Δ''P'' = 0. The heat transferred to the system does work, but also changes the internal energy (''U'') o ...
. The pressurized air and fuel mixture is then ignited in an expansion cylinder and energy is released, causing the heated air and combustion products to expand through a piston/cylinder, another ideally isentropic process. Some of the work extracted by the piston/cylinder is used to drive the compressor through a crankshaft arrangement.
Gas turbine engines are also Brayton engines, with three components: an air compressor, a
combustion
Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combust ...
chamber, and a gas turbine.
Ideal Brayton cycle:
# isentropic process – ambient air is drawn into the compressor, where it is pressurized.
#
isobaric process
In thermodynamics, an isobaric process is a type of thermodynamic process in which the pressure of the system stays constant: Δ''P'' = 0. The heat transferred to the system does work, but also changes the internal energy (''U'') o ...
– the compressed air then passes through a combustion chamber, where fuel is burned, heating that air—a constant-pressure process, since the chamber is open to flow in and out.
# isentropic process – the heated, pressurized air then gives up its energy, expanding through a turbine (or series of turbines). Some of the work extracted by the turbine is used to drive the compressor.
# isobaric process – heat rejection (in the atmosphere).
Actual Brayton cycle:
#
adiabatic process
In thermodynamics, an adiabatic process (Greek: ''adiábatos'', "impassable") is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, a ...
– compression
# isobaric process – heat addition
# adiabatic process – expansion
# isobaric process – heat rejection
Since neither the compression nor the expansion can be truly isentropic, losses through the compressor and the expander represent sources of inescapable working inefficiencies. In general, increasing the compression ratio is the most direct way to increase the overall power output of a Brayton system.
The efficiency of the ideal Brayton cycle is , where is the heat capacity ratio. Figure 1 indicates how the cycle efficiency changes with an increase in pressure ratio. Figure 2 indicates how the specific power output changes with an increase in the gas turbine inlet temperature for two different pressure ratio values.
GFImg7.png, Figure 1: Brayton-cycle efficiency
GFImg8.png, Figure 2: Brayton-cycle specific power output
The highest gas temperature in the cycle occurs where work transfer to the high pressure turbine (rotor inlet) takes place. This is lower than the highest gas temperature in the engine (combustion zone). The maximum cycle temperature is limited by the turbine materials and required turbine life. This also limits the pressure ratios that can be used in the cycle. For a fixed-turbine inlet temperature, the net work output per cycle increases with the pressure ratio (thus the thermal efficiency) and the net work output. With less work output per cycle, a larger mass flow rate (thus a larger system) is needed to maintain the same power output, which may not be economical. In most common designs, the pressure ratio of a gas turbine ranges from about 11 to 16.
Methods to increase power
The power output of a Brayton engine can be improved by:
* Reheat, wherein the working fluid—in most cases air—expands through a series of turbines, then is passed through a second combustion chamber before expanding to ambient pressure through a final set of turbines, has the advantage of increasing the power output possible for a given compression ratio without exceeding any metallurgical constraints (typically about 1000 °C). The use of an afterburner for jet aircraft engines can also be referred to as "reheat"; it is a different process in that the reheated air is expanded through a thrust nozzle rather than a turbine. The metallurgical constraints are somewhat alleviated, enabling much higher reheat temperatures (about 2000 °C). Reheat is most often used to improve the specific power, and is usually associated with a drop in efficiency; this effect is especially pronounced in afterburners due to the extreme amounts of extra fuel used.
* In overspray, after the first compressor stage, water is injected into the compressor, thus increasing the mass-flow inside the compressor, increasing the turbine output power significantly and reducing compressor outlet temperatures. In the second compressor stage, the water is completely converted to a gas form, offering some intercooling via its latent heat of vaporization.
Methods to improve efficiency
The efficiency of a Brayton engine can be improved by:
* Increasing pressure ratio, as Figure 1 above shows, increasing the pressure ratio increases the efficiency of the Brayton cycle. This is analogous to the increase of efficiency seen in the
Otto cycle
An Otto cycle is an idealized thermodynamic cycle that describes the functioning of a typical spark ignition piston engine. It is the thermodynamic cycle most commonly found in automobile engines.
The Otto cycle is a description of what ha ...
when the compression ratio is increased. However, practical limits occur when it comes to increasing the pressure ratio. First of all, increasing the pressure ratio increases the compressor discharge temperature. Since the turbine temperature has a limit determined by metallurgical and life constraints the allowable rise in temperature (fuel added) in the combustor becomes smaller. Also, because the length of the compressor blades becomes progressively smaller in the higher pressure stages a constant running gap, through the compressor, between the blade tips and the engine casing becomes a bigger percentage of the compressor blade height increasing air leakage past the tips. This causes a drop in compressor efficiency, and is most likely to occur in smaller gas turbines (since blades are inherently smaller to begin with). Finally, as can be seen in Figure 1, the efficiency levels off as pressure ratio increases. Hence, little gain is expected by increasing the pressure ratio further if it is already at a high level.
* Recuperator – If the Brayton cycle is run at a low pressure ratio and a high temperature increase in the combustion chamber, the exhaust gas (after the last turbine stage) might still be hotter than the compressed inlet gas (after the last compression stage but before the combustor). In that case, a heat exchanger can be used to transfer thermal energy from the exhaust to the already compressed gas, before it enters the combustion chamber. The thermal energy transferred is effectively reused, thus increasing efficiency. However, this form of heat recycling is only possible if the engine is run in a low-efficiency mode with low pressure ratio in the first place. Transferring heat from the outlet (after the last turbine) to the inlet (before the first compressor stage) would reduce efficiency, as hotter inlet air means more volume, thus more work for the compressor. For engines with liquid cryogenic fuels, namely
hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
, it might be feasible, though, to use the fuel to cool the inlet air before compression to increase efficiency. This concept is extensively studied for the
SABRE
A sabre (French: sabʁ or saber in American English) is a type of backsword with a curved blade associated with the light cavalry of the early modern and Napoleonic periods. Originally associated with Central European cavalry such as the ...
engine.
* A Brayton engine also forms half of the
combined cycle
A combined cycle power plant is an assembly of heat engines that work in tandem from the same source of heat, converting it into mechanical energy. On land, when used to make electricity the most common type is called a combined cycle gas tu ...
system, which combines with a
Rankine engine
The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat sou ...
to further increase overall efficiency. However, although this increases overall efficiency, it does not actually increase the efficiency of the Brayton cycle itself.
*
Cogeneration
Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time.
Cogeneration is a more efficient use of fuel or heat, because otherwise- wasted heat from elec ...
systems make use of the waste heat from Brayton engines, typically for hot water production or space heating.
Variants
Closed Brayton cycle
A closed Brayton cycle recirculates the working fluid; the air expelled from the turbine is reintroduced into the compressor, this cycle uses a
heat exchanger
A heat exchanger is a system used to transfer heat between a source and a working fluid. Heat exchangers are used in both cooling and heating processes. The fluids may be separated by a solid wall to prevent mixing or they may be in direct conta ...
to heat the working fluid instead of an internal combustion chamber. The closed Brayton cycle is used, for example, in closed-cycle gas turbine and space power generation.
Solar Brayton cycle
In 2002, a hybrid open solar Brayton cycle was operated for the first time consistently and effectively with relevant papers published, in the frame of the EU SOLGATE program.
The air was heated from 570 to over 1000K into the combustor chamber. Further hybridization was achieved during the EU Solhyco project running a hybridized Brayton cycle with solar energy and biodiesel only.
This technology was scaled up to 4.6 MW within the project Solugas located near Seville, where it is currently demonstrated at precommercial scale.
Reverse Brayton cycle
A Brayton cycle that is driven in reverse, via net work input, and when air is the working fluid, is the gas refrigeration cycle or Bell Coleman cycle. Its purpose is to move heat, rather than produce work. This air-cooling technique is used widely in jet aircraft for air conditioning systems using bleed air tapped from the engine compressors. It is also used in the LNG industry where the largest reverse Brayton cycle is for subcooling LNG using 86 MW of power from a gas turbine-driven compressor and nitrogen refrigerant.
HVAC
Heating, ventilation, and air conditioning (HVAC) is the use of various technologies to control the temperature, humidity, and purity of the air in an enclosed space. Its goal is to provide thermal comfort and acceptable indoor air quality. ...
*
Rankine cycle
The Rankine cycle is an idealized thermodynamic cycle describing the process by which certain heat engines, such as steam turbines or reciprocating steam engines, allow mechanical work to be extracted from a fluid as it moves between a heat sou ...