In
Riemannian geometry
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as manifold, smooth manifolds with a ''Riemannian metric'' (an inner product on the tangent space at each point that varies smooth function, smo ...
, a Jacobi field is a
vector field
In vector calculus and physics, a vector field is an assignment of a vector to each point in a space, most commonly Euclidean space \mathbb^n. A vector field on a plane can be visualized as a collection of arrows with given magnitudes and dire ...
along a
geodesic
In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
in a
Riemannian manifold
In differential geometry, a Riemannian manifold is a geometric space on which many geometric notions such as distance, angles, length, volume, and curvature are defined. Euclidean space, the N-sphere, n-sphere, hyperbolic space, and smooth surf ...
describing the difference between the geodesic and an "infinitesimally close" geodesic. In other words, the Jacobi fields along a geodesic form the tangent space to the geodesic in the space of all geodesics. They are named after
Carl Jacobi.
Definitions and properties
Jacobi fields can be obtained in the following way: Take a
smooth one parameter family of geodesics
with
, then
:
is a Jacobi field, and describes the behavior of the geodesics in an infinitesimal neighborhood of a
given geodesic
.
A vector field ''J'' along a geodesic
is said to be a Jacobi field if it satisfies the Jacobi equation:
:
where ''D'' denotes the
covariant derivative
In mathematics and physics, covariance is a measure of how much two variables change together, and may refer to:
Statistics
* Covariance matrix, a matrix of covariances between a number of variables
* Covariance or cross-covariance between ...
with respect to the
Levi-Civita connection
In Riemannian or pseudo-Riemannian geometry (in particular the Lorentzian geometry of general relativity), the Levi-Civita connection is the unique affine connection on the tangent bundle of a manifold that preserves the ( pseudo-) Riemannian ...
, ''R'' the
Riemann curvature tensor
Georg Friedrich Bernhard Riemann (; ; 17September 182620July 1866) was a German mathematician who made profound contributions to mathematical analysis, analysis, number theory, and differential geometry. In the field of real analysis, he is mos ...
,
the tangent vector field, and ''t'' is the parameter of the geodesic.
On a
complete Riemannian manifold, for any Jacobi field there is a family of geodesics
describing the field (as in the preceding paragraph).
The Jacobi equation is a
linear
In mathematics, the term ''linear'' is used in two distinct senses for two different properties:
* linearity of a '' function'' (or '' mapping'');
* linearity of a '' polynomial''.
An example of a linear function is the function defined by f(x) ...
, second order
ordinary differential equation
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable (mathematics), variable. As with any other DE, its unknown(s) consists of one (or more) Function (mathematic ...
;
in particular, values of
and
at one point of
uniquely determine the Jacobi field. Furthermore, the set of Jacobi fields along a given geodesic forms a real
vector space
In mathematics and physics, a vector space (also called a linear space) is a set (mathematics), set whose elements, often called vector (mathematics and physics), ''vectors'', can be added together and multiplied ("scaled") by numbers called sc ...
of dimension twice the dimension of the manifold.
As trivial examples of Jacobi fields one can consider
and
. These correspond respectively to the following families of reparametrizations:
and
.
Any Jacobi field
can be represented in a unique way as a sum
, where
is a linear combination of trivial Jacobi fields and
is orthogonal to
, for all
.
The field
then corresponds to the same variation of geodesics as
, only with changed parametrizations.
Motivating example
On a
unit sphere
In mathematics, a unit sphere is a sphere of unit radius: the locus (mathematics), set of points at Euclidean distance 1 from some center (geometry), center point in three-dimensional space. More generally, the ''unit -sphere'' is an n-sphere, -s ...
, the
geodesic
In geometry, a geodesic () is a curve representing in some sense the locally shortest path ( arc) between two points in a surface, or more generally in a Riemannian manifold. The term also has meaning in any differentiable manifold with a conn ...
s through the North pole are
great circle
In mathematics, a great circle or orthodrome is the circular intersection of a sphere and a plane passing through the sphere's center point.
Discussion
Any arc of a great circle is a geodesic of the sphere, so that great circles in spher ...
s. Consider two such geodesics
and
with natural parameter,