HOME

TheInfoList



OR:

In mathematics, specifically
abstract algebra In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include group (mathematics), groups, ring (mathematics), rings, field (mathematics), fields, module (mathe ...
, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
of
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s and provide a natural setting for studying
divisibility In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
. In an integral domain, every nonzero element ''a'' has the
cancellation property In mathematics, the notion of cancellative is a generalization of the notion of invertible. An element ''a'' in a magma has the left cancellation property (or is left-cancellative) if for all ''b'' and ''c'' in ''M'', always implies that . An ...
, that is, if , an equality implies . "Integral domain" is defined almost universally as above, but there is some variation. This article follows the convention that rings have a multiplicative identity, generally denoted 1, but some authors do not follow this, by not requiring integral domains to have a multiplicative identity. Noncommutative integral domains are sometimes admitted. This article, however, follows the much more usual convention of reserving the term "integral domain" for the commutative case and using " domain" for the general case including noncommutative rings. Some sources, notably
Lang Lang may refer to: * Lang (surname), a surname of independent Germanic or Chinese origin Places * Lang Island (Antarctica), East Antarctica * Lang Nunatak, Antarctica * Lang Sound, Antarctica * Lang Park, a stadium in Brisbane, Australia * L ...
, use the term entire ring for integral domain. Some specific kinds of integral domains are given with the following chain of class inclusions:


Definition

An ''integral domain'' is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Equivalently: * An integral domain is a nonzero commutative ring with no nonzero
zero divisor In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zer ...
s. * An integral domain is a commutative ring in which the
zero ideal In mathematics, a zero element is one of several generalizations of the number zero to other algebraic structures. These alternate meanings may or may not reduce to the same thing, depending on the context. Additive identities An additive identi ...
is a prime ideal. * An integral domain is a nonzero commutative ring for which every non-zero element is cancellable under multiplication. * An integral domain is a ring for which the set of nonzero elements is a commutative
monoid In abstract algebra, a branch of mathematics, a monoid is a set equipped with an associative binary operation and an identity element. For example, the nonnegative integers with addition form a monoid, the identity element being 0. Monoid ...
under multiplication (because a monoid must be closed under multiplication). * An integral domain is a nonzero commutative ring in which for every nonzero element ''r'', the function that maps each element ''x'' of the ring to the product ''xr'' is injective. Elements ''r'' with this property are called ''regular'', so it is equivalent to require that every nonzero element of the ring be regular. * An integral domain is a ring that is isomorphic to a subring of a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
. (Given an integral domain, one can embed it in its
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
.)


Examples

* The archetypical example is the ring \Z of all
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s. * Every
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
is an integral domain. For example, the field \R of all
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s is an integral domain. Conversely, every Artinian integral domain is a field. In particular, all finite integral domains are
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
s (more generally, by
Wedderburn's little theorem In mathematics, Wedderburn's little theorem states that every finite domain is a field. In other words, for finite rings, there is no distinction between domains, division rings and fields. The Artin–Zorn theorem generalizes the theorem to al ...
, finite domains are
finite field In mathematics, a finite field or Galois field (so-named in honor of Évariste Galois) is a field that contains a finite number of elements. As with any field, a finite field is a set on which the operations of multiplication, addition, subtr ...
s). The ring of integers \Z provides an example of a non-Artinian infinite integral domain that is not a field, possessing infinite descending sequences of ideals such as: ::\Z \supset 2\Z \supset \cdots \supset 2^n\Z \supset 2^\Z \supset \cdots * Rings of
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
s are integral domains if the coefficients come from an integral domain. For instance, the ring \Z /math> of all polynomials in one variable with integer coefficients is an integral domain; so is the ring \Complex _1,\ldots,x_n/math> of all polynomials in ''n''-variables with
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
coefficients. * The previous example can be further exploited by taking quotients from prime ideals. For example, the ring \Complex ,y(y^2 - x(x-1)(x-2))corresponding to a plane
elliptic curve In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point . An elliptic curve is defined over a field and describes points in , the Cartesian product of with itself. If ...
is an integral domain. Integrality can be checked by showing y^2 - x(x-1)(x-2)is an
irreducible polynomial In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted f ...
. * The ring \Z (x^2 - n) \cong \Z
sqrt In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . ...
/math> is an integral domain for any non-square integer n. If n > 0, then this ring is always a subring of \R, otherwise, it is a subring of \Complex. * The ring of
p-adic integers In mathematics, the -adic number system for any prime number  extends the ordinary arithmetic of the rational numbers in a different way from the extension of the rational number system to the real and complex number systems. The extension ...
\Z_p is an integral domain. * If U is a
connected Connected may refer to: Film and television * ''Connected'' (2008 film), a Hong Kong remake of the American movie ''Cellular'' * '' Connected: An Autoblogography About Love, Death & Technology'', a 2011 documentary film * ''Connected'' (2015 TV ...
open subset of the complex plane \Complex, then the ring \mathcal(U) consisting of all holomorphic functions is an integral domain. The same is true for rings of
analytic function In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex ...
s on connected open subsets of analytic manifolds. * A
regular local ring In commutative algebra, a regular local ring is a Noetherian local ring having the property that the minimal number of generators of its maximal ideal is equal to its Krull dimension. In symbols, let ''A'' be a Noetherian local ring with maximal ide ...
is an integral domain. In fact, a regular local ring is a UFD.


Non-examples

The following rings are ''not'' integral domains. * The
zero ring In ring theory, a branch of mathematics, the zero ring or trivial ring is the unique ring (up to isomorphism) consisting of one element. (Less commonly, the term "zero ring" is used to refer to any rng of square zero, i.e., a rng in which for ...
(the ring in which 0=1). * The
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
\Z/m\Z when ''m'' is a
composite number A composite number is a positive integer that can be formed by multiplying two smaller positive integers. Equivalently, it is a positive integer that has at least one divisor other than 1 and itself. Every positive integer is composite, prime, ...
. Indeed, choose a proper factorization m = xy (meaning that x and y are not equal to 1 or m). Then x \not\equiv 0 \bmod and y \not\equiv 0 \bmod, but xy \equiv 0 \bmod. * A
product Product may refer to: Business * Product (business), an item that serves as a solution to a specific consumer problem. * Product (project management), a deliverable or set of deliverables that contribute to a business solution Mathematics * Produ ...
of two nonzero commutative rings. In such a product R \times S, one has (1,0) \cdot (0,1) = (0,0). * The
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
\Z (x^2 - n^2) for any n \in \mathbb. The images of x+n and x-n are nonzero, while their product is 0 in this ring. * The
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
of ''n'' × ''n''
matrices Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
over any nonzero ring when ''n'' ≥ 2. If M and N are matrices such that the image of N is contained in the kernel of M, then MN = 0. For example, this happens for M = N = (\begin 0 & 1 \\ 0 & 0 \end). * The quotient ring k _1,\ldots,x_n(fg) for any field k and any non-constant polynomials f,g \in k _1,\ldots,x_n/math>. The images of and in this quotient ring are nonzero elements whose product is 0. This argument shows, equivalently, that (fg) is not a prime ideal. The geometric interpretation of this result is that the zeros of form an
affine algebraic set Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine com ...
that is not irreducible (that is, not an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
) in general. The only case where this algebraic set may be irreducible is when is a power of an
irreducible polynomial In mathematics, an irreducible polynomial is, roughly speaking, a polynomial that cannot be factored into the product of two non-constant polynomials. The property of irreducibility depends on the nature of the coefficients that are accepted f ...
, which defines the same algebraic set. * The ring of continuous functions on the
unit interval In mathematics, the unit interval is the closed interval , that is, the set of all real numbers that are greater than or equal to 0 and less than or equal to 1. It is often denoted ' (capital letter ). In addition to its role in real analysis ...
. Consider the functions :: f(x) = \begin 1-2x & x \in \left , \tfrac \right \\ 0 & x \in \left tfrac, 1 \right \end \qquad g(x) = \begin 0 & x \in \left , \tfrac \right \\ 2x-1 & x \in \left tfrac, 1 \right \end :Neither f nor g is everywhere zero, but fg is. * The
tensor product In mathematics, the tensor product V \otimes W of two vector spaces and (over the same field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an element of V \otime ...
\Complex \otimes_ \Complex. This ring has two non-trivial
idempotent Idempotence (, ) is the property of certain operations in mathematics and computer science whereby they can be applied multiple times without changing the result beyond the initial application. The concept of idempotence arises in a number of pl ...
s, e_1 = \tfrac(1 \otimes 1) - \tfrac(i \otimes i) and e_2 = \tfrac(1 \otimes 1) + \tfrac(i \otimes i). They are orthogonal, meaning that e_1e_2 = 0, and hence \Complex \otimes_ \Complex is not a domain. In fact, there is an isomorphism \Complex \times \Complex \to \Complex \otimes_ \Complex defined by (z, w) \mapsto z \cdot e_1 + w \cdot e_2. Its inverse is defined by z \otimes w \mapsto (zw, z\overline). This example shows that a
fiber product In category theory, a branch of mathematics, a pullback (also called a fiber product, fibre product, fibered product or Cartesian square) is the limit of a diagram consisting of two morphisms and with a common codomain. The pullback is often w ...
of irreducible affine schemes need not be irreducible.


Divisibility, prime elements, and irreducible elements

In this section, ''R'' is an integral domain. Given elements ''a'' and ''b'' of ''R'', one says that ''a'' ''divides'' ''b'', or that ''a'' is a ''
divisor In mathematics, a divisor of an integer n, also called a factor of n, is an integer m that may be multiplied by some integer to produce n. In this case, one also says that n is a multiple of m. An integer n is divisible or evenly divisible by ...
'' of ''b'', or that ''b'' is a ''multiple'' of ''a'', if there exists an element ''x'' in ''R'' such that . The ''
unit Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (a ...
s'' of ''R'' are the elements that divide 1; these are precisely the invertible elements in ''R''. Units divide all other elements. If ''a'' divides ''b'' and ''b'' divides ''a'', then ''a'' and ''b'' are associated elements or associates. Equivalently, ''a'' and ''b'' are associates if for some
unit Unit may refer to: Arts and entertainment * UNIT, a fictional military organization in the science fiction television series ''Doctor Who'' * Unit of action, a discrete piece of action (or beat) in a theatrical presentation Music * ''Unit'' (a ...
''u''. An ''
irreducible element In algebra, an irreducible element of a domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. Relationship with prime elements Irreducible elements should not be confus ...
'' is a nonzero non-unit that cannot be written as a product of two non-units. A nonzero non-unit ''p'' is a '' prime element'' if, whenever ''p'' divides a product ''ab'', then ''p'' divides ''a'' or ''p'' divides ''b''. Equivalently, an element ''p'' is prime if and only if the
principal ideal In mathematics, specifically ring theory, a principal ideal is an ideal I in a ring R that is generated by a single element a of R through multiplication by every element of R. The term also has another, similar meaning in order theory, where ...
(''p'') is a nonzero prime ideal. Both notions of irreducible elements and prime elements generalize the ordinary definition of
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
s in the ring \Z, if one considers as prime the negative primes. Every prime element is irreducible. The converse is not true in general: for example, in the
quadratic integer In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form : with and (usual) integers. When algebra ...
ring \Z\left sqrt\right/math> the element 3 is irreducible (if it factored nontrivially, the factors would each have to have norm 3, but there are no norm 3 elements since a^2+5b^2=3 has no integer solutions), but not prime (since 3 divides \left(2 + \sqrt\right)\left(2 - \sqrt\right) without dividing either factor). In a unique factorization domain (or more generally, a GCD domain), an irreducible element is a prime element. While
unique factorization In mathematics, a unique factorization domain (UFD) (also sometimes called a factorial ring following the terminology of Bourbaki) is a ring in which a statement analogous to the fundamental theorem of arithmetic holds. Specifically, a UFD is a ...
does not hold in \Z\left sqrt\right/math>, there is unique factorization of ideals. See
Lasker–Noether theorem In mathematics, the Lasker–Noether theorem states that every Noetherian ring is a Lasker ring, which means that every ideal can be decomposed as an intersection, called primary decomposition, of finitely many ''primary ideals'' (which are relate ...
.


Properties

* A commutative ring ''R'' is an integral domain if and only if the ideal (0) of ''R'' is a prime ideal. * If ''R'' is a commutative ring and ''P'' is an
ideal Ideal may refer to: Philosophy * Ideal (ethics), values that one actively pursues as goals * Platonic ideal, a philosophical idea of trueness of form, associated with Plato Mathematics * Ideal (ring theory), special subsets of a ring considere ...
in ''R'', then the
quotient ring In ring theory, a branch of abstract algebra, a quotient ring, also known as factor ring, difference ring or residue class ring, is a construction quite similar to the quotient group in group theory and to the quotient space in linear algebra. ...
''R/P'' is an integral domain if and only if ''P'' is a prime ideal. * Let ''R'' be an integral domain. Then the
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables ...
s over ''R'' (in any number of indeterminates) are integral domains. This is in particular the case if ''R'' is a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
. * The cancellation property holds in any integral domain: for any ''a'', ''b'', and ''c'' in an integral domain, if ''a'' ≠ ''0'' and ''ab'' = ''ac'' then ''b'' = ''c''. Another way to state this is that the function ''x'' ''ax'' is injective for any nonzero ''a'' in the domain. * The cancellation property holds for ideals in any integral domain: if ''xI'' = ''xJ'', then either ''x'' is zero or ''I'' = ''J''. * An integral domain is equal to the intersection of its localizations at maximal ideals. * An
inductive limit In mathematics, a direct limit is a way to construct a (typically large) object from many (typically smaller) objects that are put together in a specific way. These objects may be groups, rings, vector spaces or in general objects from any catego ...
of integral domains is an integral domain. *If A, B are integral domains over an algebraically closed field ''k'', then A \otimes_k B is an integral domain. This is a consequence of
Hilbert's nullstellensatz In mathematics, Hilbert's Nullstellensatz (German for "theorem of zeros," or more literally, "zero-locus-theorem") is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic ...
,Proof: First assume ''A'' is finitely generated as a ''k''-algebra and pick a k-basis g_i of B. Suppose \sum f_i \otimes g_i \sum h_j \otimes g_j = 0 (only finitely many f_i, h_j are nonzero). For each maximal ideal \mathfrak of A, consider the ring homomorphism A \otimes_k B \to A/\mathfrak \otimes_k B = k \otimes_k B \simeq B. Then the image is \sum \overline g_i \sum \overline g_i = 0 and thus either \sum \overline g_i = 0 or \sum \overline g_i = 0 and, by linear independence, \overline = 0 for all i or \overline = 0 for all i. Since \mathfrak is arbitrary, we have (\sum f_iA) (\sum h_iA) \subset \operatorname(A) = the intersection of all maximal ideals = (0) where the last equality is by the Nullstellensatz. Since (0) is a prime ideal, this implies either \sum f_iA or \sum h_iA is the zero ideal; i.e., either f_i are all zero or h_i are all zero. Finally, A is an inductive limit of finitely generated ''k''-algebras that are integral domains and thus, using the previous property, A \otimes_k B = \varinjlim A_i \otimes_k B is an integral domain. \square and, in algebraic geometry, it implies the statement that the coordinate ring of the product of two affine algebraic varieties over an algebraically closed field is again an integral domain.


Field of fractions

The
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field ...
''K'' of an integral domain ''R'' is the set of fractions ''a''/''b'' with ''a'' and ''b'' in ''R'' and ''b'' ≠ 0 modulo an appropriate equivalence relation, equipped with the usual addition and multiplication operations. It is "the smallest field containing ''R'' " in the sense that there is an injective ring homomorphism such that any injective ring homomorphism from ''R'' to a field factors through ''K''. The field of fractions of the ring of integers \Z is the field of
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
s \Q. The field of fractions of a field is isomorphic to the field itself.


Algebraic geometry

Integral domains are characterized by the condition that they are reduced (that is ''x''2 = 0 implies ''x'' = 0) and irreducible (that is there is only one
minimal prime ideal In mathematics, especially in commutative algebra, certain prime ideals called minimal prime ideals play an important role in understanding rings and modules. The notion of height and Krull's principal ideal theorem use minimal primes. Definitio ...
). The former condition ensures that the nilradical of the ring is zero, so that the intersection of all the ring's minimal primes is zero. The latter condition is that the ring have only one minimal prime. It follows that the unique minimal prime ideal of a reduced and irreducible ring is the zero ideal, so such rings are integral domains. The converse is clear: an integral domain has no nonzero nilpotent elements, and the zero ideal is the unique minimal prime ideal. This translates, in algebraic geometry, into the fact that the
coordinate ring In algebraic geometry, an affine variety, or affine algebraic variety, over an algebraically closed field is the zero-locus in the affine space of some finite family of polynomials of variables with coefficients in that generate a prime ideal ...
of an
affine algebraic set Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine com ...
is an integral domain if and only if the algebraic set is an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
. More generally, a commutative ring is an integral domain if and only if its
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
is an
integral In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration. Along wit ...
affine scheme.


Characteristic and homomorphisms

The characteristic of an integral domain is either 0 or a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
. If ''R'' is an integral domain of prime characteristic ''p'', then the
Frobenius endomorphism In commutative algebra and field theory, the Frobenius endomorphism (after Ferdinand Georg Frobenius) is a special endomorphism of commutative rings with prime characteristic , an important class which includes finite fields. The endomorphis ...
''f''(''x'') = ''x''''p'' is injective.


See also

* Dedekind–Hasse norm – the extra structure needed for an integral domain to be principal * Zero-product property


Notes


References

* * * * * * * * * * * B.L. van der Waerden, Algebra, Springer-Verlag, Berlin Heidelberg, 1966.


External links

* {{DEFAULTSORT:Integral Domain Commutative algebra Ring theory