HOME

TheInfoList



OR:

In
set theory Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly conce ...
, an infinite set is a
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
that is not a
finite set In mathematics, particularly set theory, a finite set is a set that has a finite number of elements. Informally, a finite set is a set which one could in principle count and finish counting. For example, :\ is a finite set with five elements. T ...
.
Infinite Infinite may refer to: Mathematics * Infinite set, a set that is not a finite set *Infinity, an abstract concept describing something without any limit Music *Infinite (group), a South Korean boy band *''Infinite'' (EP), debut EP of American m ...
sets may be
countable In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers ...
or
uncountable In mathematics, an uncountable set (or uncountably infinite set) is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal num ...
.


Properties

The set of natural numbers (whose existence is postulated by the
axiom of infinity In axiomatic set theory and the branches of mathematics and philosophy that use it, the axiom of infinity is one of the axioms of Zermelo–Fraenkel set theory. It guarantees the existence of at least one infinite set, namely a set containing th ...
) is infinite. It is the only set that is directly required by the axioms to be infinite. The existence of any other infinite set can be proved in
Zermelo–Fraenkel set theory In set theory, Zermelo–Fraenkel set theory, named after mathematicians Ernst Zermelo and Abraham Fraenkel, is an axiomatic system that was proposed in the early twentieth century in order to formulate a theory of sets free of paradoxes such ...
(ZFC), but only by showing that it follows from the existence of the natural numbers. A set is infinite if and only if for every natural number, the set has a subset whose cardinality is that natural number. If the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collection ...
holds, then a set is infinite if and only if it includes a countable infinite subset. If a
set of sets In set theory and related branches of mathematics, a collection F of subsets of a given set S is called a family of subsets of S, or a family of sets over S. More generally, a collection of any sets whatsoever is called a family of sets, set fa ...
is infinite or contains an infinite element, then its union is infinite. The power set of an infinite set is infinite. Any
superset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
of an infinite set is infinite. If an infinite set is partitioned into finitely many subsets, then at least one of them must be infinite. Any set which can be mapped ''
onto In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of ...
'' an infinite set is infinite. The Cartesian product of an infinite set and a nonempty set is infinite. The Cartesian product of an infinite number of sets, each containing at least two elements, is either empty or infinite; if the axiom of choice holds, then it is infinite. If an infinite set is a
well-ordered set In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-ord ...
, then it must have a nonempty, nontrivial subset that has no greatest element. In ZF, a set is infinite if and only if the
power set In mathematics, the power set (or powerset) of a set is the set of all subsets of , including the empty set and itself. In axiomatic set theory (as developed, for example, in the ZFC axioms), the existence of the power set of any set is post ...
of its power set is a
Dedekind-infinite set In mathematics, a set ''A'' is Dedekind-infinite (named after the German mathematician Richard Dedekind) if some proper subset ''B'' of ''A'' is equinumerous to ''A''. Explicitly, this means that there exists a bijective function from ''A'' onto ...
, having a proper subset
equinumerous In mathematics, two sets or classes ''A'' and ''B'' are equinumerous if there exists a one-to-one correspondence (or bijection) between them, that is, if there exists a function from ''A'' to ''B'' such that for every element ''y'' of ''B'', the ...
to itself. If the axiom of choice is also true, then infinite sets are precisely the Dedekind-infinite sets. If an infinite set is a
well-orderable set In mathematics, a well-order (or well-ordering or well-order relation) on a set ''S'' is a total order on ''S'' with the property that every non-empty subset of ''S'' has a least element in this ordering. The set ''S'' together with the well-ord ...
, then it has many well-orderings which are non-isomorphic. Infinite set theory involves proofs and definitions. Important ideas discussed by Burton include how to define "elements" or parts of a set, how to define unique elements in the set, and how to prove infinity. Burton also discusses proofs for different types of infinity, including countable and uncountable sets. Topics used when comparing infinite and finite sets include ordered sets, cardinality, equivalency, coordinate planes, universal sets, mapping, subsets, continuity, and transcendence. Candor's set ideas were influenced by trigonometry and irrational numbers. Other key ideas in infinite set theory mentioned by Burton, Paula, Narli and Rodger include real numbers such as pi, integers, and Euler's number. Both Burton and Rogers use finite sets to start to explain infinite sets using proof concepts such as mapping, proof by induction, or proof by contradiction. Mathematical trees can also be used to understand infinite sets. Burton also discusses proofs of infinite sets including ideas such as unions and subsets. In Chapter 12 of ''The History of Mathematics: An Introduction'', Burton emphasizes how mathematicians such as Zermelo, Dedekind, Galileo, Kronecker, Cantor, and Bolzano investigated and influenced infinite set theory. Potential historical influences, such as how Prussia's history in the 1800's, resulted in an increase in scholarly mathematical knowledge, including Candor's theory of infinite sets. Mathematicians including Zermelo, Dedekind, Galileo, Kronecker, Cantor, and Bolzano investigated or influenced infinite set theory. Many of these mathematicians either debated infinity or otherwise added to the ideas of infinite sets. One potential application of infinite set theory is in genetics and biology.


Examples


Countably infinite sets

The set of all
integer An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the languag ...
s, is a countably infinite set. The set of all even integers is also a countably infinite set, even if it is a proper subset of the integers. The set of all
rational numbers In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all rat ...
is a countably infinite set as there is a bijection to the set of integers.


Uncountably infinite sets

The set of all
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
s is an uncountably infinite set. The set of all
irrational numbers In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
is also an uncountably infinite set.


See also

*
Aleph number In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality (or size) of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named a ...
*
Cardinal number In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. T ...
* Ordinal number


References


External links


A Crash Course in the Mathematics Of Infinite Sets
{{Mathematical logic Cardinal numbers