HOME

TheInfoList



OR:

There are seven stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s of mercury (80Hg) with 202Hg being the most abundant (29.86%). The longest-lived
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
s are 194Hg with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of 444 years, and 203Hg with a half-life of 46.612 days. Most of the remaining 40
radioisotopes A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
have half-lives that are less than a day. 199Hg and 201Hg are the most often studied
NMR Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are perturbed by a weak oscillating magnetic field (in the near field) and respond by producing an electromagnetic signal with ...
-active nuclei, having spin quantum numbers of 1/2 and 3/2 respectively. All isotopes of mercury are either radioactive or
observationally stable Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes. Th ...
, meaning that they are predicted to be radioactive but no actual decay has been observed. These isotopes are predicted to undergo either
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an at ...
or
double beta decay In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move clos ...
. 180Hg, producible from 180Tl, was found in 2010 to be capable of an unusual form of spontaneous fission. The fission products are 80Kr and 100Ru.


List of isotopes

, - , 170Hg , style="text-align:right" , 80 , style="text-align:right" , 90 , , 80(+400-40) μs , α , 166Pt , 0+ , , , - , 171Hg , style="text-align:right" , 80 , style="text-align:right" , 91 , 171.00376(32)# , 80(30) μs
9(+36−16) μs, α , 167Pt , 3/2−# , , , - , 172Hg , style="text-align:right" , 80 , style="text-align:right" , 92 , 171.99883(22) , 420(240) μs
.25(+35−9) ms, α , 168Pt , 0+ , , , - , 173Hg , style="text-align:right" , 80 , style="text-align:right" , 93 , 172.99724(22)# , 1.1(4) ms
.6(+5−2) ms, α , 169Pt , 3/2−# , , , - , 174Hg , style="text-align:right" , 80 , style="text-align:right" , 94 , 173.992864(21) , 2.0(4) ms
.1(+18−7) ms, α , 170Pt , 0+ , , , - , 175Hg , style="text-align:right" , 80 , style="text-align:right" , 95 , 174.99142(11) , 10.8(4) ms , α , 171Pt , 5/2−# , , , - , rowspan=2, 176Hg , rowspan=2 style="text-align:right" , 80 , rowspan=2 style="text-align:right" , 96 , rowspan=2, 175.987355(15) , rowspan=2, 20.4(15) ms , α (98.6%) , 172Pt , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+ (1.4%) , 176Au , - , rowspan=2, 177Hg , rowspan=2 style="text-align:right" , 80 , rowspan=2 style="text-align:right" , 97 , rowspan=2, 176.98628(8) , rowspan=2, 127.3(18) ms , α (85%) , 173Pt , rowspan=2, 5/2−# , rowspan=2, , rowspan=2, , - , β+ (15%) , 177Au , - , rowspan=2, 178Hg , rowspan=2 style="text-align:right" , 80 , rowspan=2 style="text-align:right" , 98 , rowspan=2, 177.982483(14) , rowspan=2, 0.269(3) s , α (70%) , 174Pt , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+ (30%) , 178Au , - , rowspan=3, 179Hg , rowspan=3 style="text-align:right" , 80 , rowspan=3 style="text-align:right" , 99 , rowspan=3, 178.981834(29) , rowspan=3, 1.09(4) s , α (53%) , 175Pt , rowspan=3, 5/2−# , rowspan=3, , rowspan=3, , - , β+ (47%) , 179Au , - , β+, p (.15%) , 178Pt , - , rowspan=3, 180HgWhen produced from 180Tl can also undergo fission to 100Ru and 80Kr , rowspan=3 style="text-align:right" , 80 , rowspan=3 style="text-align:right" , 100 , rowspan=3, 179.978266(15) , rowspan=3, 2.58(1) s , β+ (52%) , 180Au , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , α (48%) , 176Pt , - , SF , 100Ru, 80Kr , - , rowspan=4, 181Hg , rowspan=4 style="text-align:right" , 80 , rowspan=4 style="text-align:right" , 101 , rowspan=4, 180.977819(17) , rowspan=4, 3.6(1) s , β+ (64%) , 181Au , rowspan=4, 1/2(−) , rowspan=4, , rowspan=4, , - , α (36%) , 177Pt , - , β+, p (.014%) , 180Pt , - , β+, α (9×10−6%) , 177Ir , - , style="text-indent:1em" , 181mHg , colspan="3" style="text-indent:2em" , 210(40)# keV , , , , 13/2+ , , , - , rowspan=3, 182Hg , rowspan=3 style="text-align:right" , 80 , rowspan=3 style="text-align:right" , 102 , rowspan=3, 181.97469(1) , rowspan=3, 10.83(6) s , β+ (84.8%) , 182Au , rowspan=3, 0+ , rowspan=3, , rowspan=3, , - , α (15.2%) , 178Pt , - , β+, p (10−5%) , 181Pt , - , rowspan=3, 183Hg , rowspan=3 style="text-align:right" , 80 , rowspan=3 style="text-align:right" , 103 , rowspan=3, 182.974450(9) , rowspan=3, 9.4(7) s , β+ (74.5%) , 183Au , rowspan=3, 1/2− , rowspan=3, , rowspan=3, , - , α (25.5%) , 179Pt , - , β+, p (5.6×10−4%) , 182Pt , - , style="text-indent:1em" , 183m1Hg , colspan="3" style="text-indent:2em" , 198(14) keV , , , , 13/2+# , , , - , style="text-indent:1em" , 183m2Hg , colspan="3" style="text-indent:2em" , 240(40)# keV , 5# s , β+ , 183Au , 13/2+# , , , - , rowspan=2, 184Hg , rowspan=2 style="text-align:right" , 80 , rowspan=2 style="text-align:right" , 104 , rowspan=2, 183.971713(11) , rowspan=2, 30.6(3) s , β+ (98.89%) , 184Au , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (1.11%) , 180Pt , - , rowspan=2, 185Hg , rowspan=2 style="text-align:right" , 80 , rowspan=2 style="text-align:right" , 105 , rowspan=2, 184.971899(17) , rowspan=2, 49.1(10) s , β+ (94%) , 185Au , rowspan=2, 1/2− , rowspan=2, , rowspan=2, , - , α (6%) , 181Pt , - , rowspan=3 style="text-indent:1em" , 185mHg , rowspan=3 colspan="3" style="text-indent:2em" , 99.3(5) keV , rowspan=3, 21.6(15) s , IT (54%) , 185Hg , rowspan=3, 13/2+ , rowspan=3, , rowspan=3, , - , β+ (46%) , 185Au , - , α (.03%) , 181Pt , - , rowspan=2, 186Hg , rowspan=2 style="text-align:right" , 80 , rowspan=2 style="text-align:right" , 106 , rowspan=2, 185.969362(12) , rowspan=2, 1.38(6) min , β+ (99.92%) , 186Au , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (.016%) , 182Pt , - , style="text-indent:1em" , 186mHg , colspan="3" style="text-indent:2em" , 2217.3(4) keV , 82(5) μs , , , (8−) , , , - , rowspan=2, 187Hg , rowspan=2 style="text-align:right" , 80 , rowspan=2 style="text-align:right" , 107 , rowspan=2, 186.969814(15) , rowspan=2, 1.9(3) min , β+ , 187Au , rowspan=2, 3/2− , rowspan=2, , rowspan=2, , - , α (1.2×10−4%) , 183Pt , - , rowspan=2 style="text-indent:1em" , 187mHg , rowspan=2 colspan="3" style="text-indent:2em" , 59(16) keV , rowspan=2, 2.4(3) min , β+ , 187Au , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , α (2.5×10−4%) , 183Pt , - , rowspan=2, 188Hg , rowspan=2 style="text-align:right" , 80 , rowspan=2 style="text-align:right" , 108 , rowspan=2, 187.967577(12) , rowspan=2, 3.25(15) min , β+ , 188Au , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (3.7×10−5%) , 184Pt , - , style="text-indent:1em" , 188mHg , colspan="3" style="text-indent:2em" , 2724.3(4) keV , 134(15) ns , , , (12+) , , , - , rowspan=2, 189Hg , rowspan=2 style="text-align:right" , 80 , rowspan=2 style="text-align:right" , 109 , rowspan=2, 188.96819(4) , rowspan=2, 7.6(1) min , β+ , 189Au , rowspan=2, 3/2− , rowspan=2, , rowspan=2, , - , α (3×10−5%) , 185Pt , - , rowspan=2 style="text-indent:1em" , 189mHg , rowspan=2 colspan="3" style="text-indent:2em" , 80(30) keV , rowspan=2, 8.6(1) min , β+ , 189Au , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , α (3×10−5%) , 185Pt , - , rowspan=2, 190Hg , rowspan=2 style="text-align:right" , 80 , rowspan=2 style="text-align:right" , 110 , rowspan=2, 189.966322(17) , rowspan=2, 20.0(5) min , β+ , 190Au , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (5×10−5%) , 186Pt , - , 191Hg , style="text-align:right" , 80 , style="text-align:right" , 111 , 190.967157(24) , 49(10) min , β+ , 191Au , 3/2(−) , , , - , style="text-indent:1em" , 191mHg , colspan="3" style="text-indent:2em" , 128(22) keV , 50.8(15) min , β+ , 191Au , 13/2+ , , , - , rowspan=2, 192Hg , rowspan=2 style="text-align:right" , 80 , rowspan=2 style="text-align:right" , 112 , rowspan=2, 191.965634(17) , rowspan=2, 4.85(20) h , EC , 192Au , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , α (4×10−6%) , 188Pt , - , 193Hg , style="text-align:right" , 80 , style="text-align:right" , 113 , 192.966665(17) , 3.80(15) h , β+ , 193Au , 3/2− , , , - , rowspan=2 style="text-indent:1em" , 193mHg , rowspan=2 colspan="3" style="text-indent:2em" , 140.76(5) keV , rowspan=2, 11.8(2) h , β+ (92.9%) , 193Au , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , IT (7.1%) , 193Hg , - , 194Hg , style="text-align:right" , 80 , style="text-align:right" , 114 , 193.965439(13) , 444(77) y , EC , 194Au , 0+ , , , - , 195Hg , style="text-align:right" , 80 , style="text-align:right" , 115 , 194.966720(25) , 10.53(3) h , β+ , 195Au , 1/2− , , , - , rowspan=2 style="text-indent:1em" , 195mHg , rowspan=2 colspan="3" style="text-indent:2em" , 176.07(4) keV , rowspan=2, 41.6(8) h , IT (54.2%) , 195Hg , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , β+ (45.8%) , 195Au , - , 196Hg , style="text-align:right" , 80 , style="text-align:right" , 116 , 195.965833(3) , colspan=3 align=center,
Observationally Stable Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes. Th ...
Believed to undergo β+β+ decay to 196Pt with a half-life over 2.5×1018 years , 0+ , 0.0015(1) , , - , 197Hg , style="text-align:right" , 80 , style="text-align:right" , 117 , 196.967213(3) , 64.14(5) h , EC , 197Au , 1/2− , , , - , rowspan=2 style="text-indent:1em" , 197mHg , rowspan=2 colspan="3" style="text-indent:2em" , 298.93(8) keV , rowspan=2, 23.8(1) h , IT (91.4%) , 197Hg , rowspan=2, 13/2+ , rowspan=2, , rowspan=2, , - , EC (8.6%) , 197Au , - , 198Hg , style="text-align:right" , 80 , style="text-align:right" , 118 , 197.9667690(4) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 194Pt , 0+ , 0.0997(20) , , - , 199Hg , style="text-align:right" , 80 , style="text-align:right" , 119 , 198.9682799(4) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 195Pt , 1/2− , 0.1687(22) , , - , style="text-indent:1em" , 199mHg , colspan="3" style="text-indent:2em" , 532.48(10) keV , 42.66(8) min , IT , 199Hg , 13/2+ , , , - , 200Hg , style="text-align:right" , 80 , style="text-align:right" , 120 , 199.9683260(4) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 196Pt , 0+ , 0.2310(19) , , - , 201Hg , style="text-align:right" , 80 , style="text-align:right" , 121 , 200.9703023(6) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 197Pt , 3/2− , 0.1318(9) , , - , style="text-indent:1em" , 201mHg , colspan="3" style="text-indent:2em" , 766.22(15) keV , 94(3) μs , , , 13/2+ , , , - , 202Hg , style="text-align:right" , 80 , style="text-align:right" , 122 , 201.9706430(6) , colspan=3 align=center, Observationally StableBelieved to undergo α decay to 198Pt , 0+ , 0.2986(26) , , - , 203Hg , style="text-align:right" , 80 , style="text-align:right" , 123 , 202.9728725(18) , 46.595(6) d , β , 203Tl , 5/2− , , , - , style="text-indent:1em" , 203mHg , colspan="3" style="text-indent:2em" , 933.14(23) keV , 24(4) μs , , , (13/2+) , , , - , 204Hg , style="text-align:right" , 80 , style="text-align:right" , 124 , 203.9734939(4) , colspan=3 align=center, Observationally StableBelieved to undergo ββ decay to 204Pb , 0+ , 0.0687(15) , , - , 205Hg , style="text-align:right" , 80 , style="text-align:right" , 125 , 204.976073(4) , 5.14(9) min , β , 205Tl , 1/2− , , , - , style="text-indent:1em" , 205mHg , colspan="3" style="text-indent:2em" , 1556.40(17) keV , 1.09(4) ms , IT , 205Hg , 13/2+ , , , - , 206Hg , style="text-align:right" , 80 , style="text-align:right" , 126 , 205.977514(22) , 8.15(10) min , β , 206Tl , 0+ , TraceIntermediate decay product of 238U , , - , 207Hg , style="text-align:right" , 80 , style="text-align:right" , 127 , 206.98259(16) , 2.9(2) min , β , 207Tl , (9/2+) , , , - , 208Hg , style="text-align:right" , 80 , style="text-align:right" , 128 , 207.98594(32)# , 42(5) min
1(+5−4) min, β , 208Tl , 0+ , , , - , 209Hg , style="text-align:right" , 80 , style="text-align:right" , 129 , 208.99104(21)# , 37(8) s , , , 9/2+# , , , - , 210Hg , style="text-align:right" , 80 , style="text-align:right" , 130 , 209.99451(32)# , 10# min
300 ns, , , 0+ , , , - , 211Hg , style="text-align:right" , 80 , style="text-align:right" , 131 , 210.99380(200)# , 26(8) s , , , 9/2+# , , , - , 212Hg , style="text-align:right" , 80 , style="text-align:right" , 132 , 212.02760(300)# , 1# min
300 ns, , , 0+ , , , - , 213Hg , style="text-align:right" , 80 , style="text-align:right" , 133 , 213.07670(300)# , 1# s
300 ns, , , 5/2+# , , , - , 214Hg , style="text-align:right" , 80 , style="text-align:right" , 134 , 214.11180(400)# , 1# s
300 ns, , , 0+ , , , - , 215Hg , style="text-align:right" , 80 , style="text-align:right" , 135 , 215.16210(400)# , 1# s
300 ns, , , 3/2+# , , , - , 216Hg , style="text-align:right" , 80 , style="text-align:right" , 136 , 216.19860(400)# , 100# ms
300 ns, , , 0+ , ,


Particular Isotopes


Hg-196

While it is the rarest stable isotope of Mercury, at a proportion lower than that of in natural uranium, Hg-196 is of some theoretical interest in the synthesis of precious metals via nuclear transmutation since it could - in theory - be transmutated into the only stable gold isotope via
neutron absorption Neutron capture is a nuclear reaction in which an atomic nucleus and one or more neutrons collide and merge to form a heavier nucleus. Since neutrons have no electric charge, they can enter a nucleus more easily than positively charged protons, ...
and subsequent decay via
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Thi ...
. However, given that a costly step of
isotope separation Isotope separation is the process of concentrating specific isotopes of a chemical element by removing other isotopes. The use of the nuclides produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" n ...
would have to precede the already costly process of transmutation, this has (as of 2022) mostly remained a theoretical curiosity rather than an actual area of research.


Hg-198

At roughly 10% of natural Mercury, Hg-198 is neither particularly abundant nor particularly rare. It has a non-negligible
gamma ray cross section Gamma ray cross section - a measure of the probability that gamma ray interacts with matter. The total cross section of gamma ray interactions is composed of several independent processes: photoelectric effect, Compton scattering, electron-positron ...
for the ( γ, n) reaction with 10 Mega-
Electronvolt In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an electric potential difference of one volt in vacuum ...
Gamma Rays. This reaction, in addition to serving as a potential
neutron source A neutron source is any device that emits neutrons, irrespective of the mechanism used to produce the neutrons. Neutron sources are used in physics, engineering, medicine, nuclear weapons, petroleum exploration, biology, chemistry, and nuclear p ...
could also be used to produce Hg-197 and via electron capture produce - stable gold. Given that it is roughly two
orders of magnitude An order of magnitude is an approximation of the logarithm of a value relative to some contextually understood reference value, usually 10, interpreted as the base of the logarithm and the representative of values of magnitude one. Logarithmic dis ...
more abundant that Hg-196, the required isotopic separation, even it required a further step of separating the lighter Hg-196 from the heavier Hg-198 could be achieved with a better yield for any given effort than for Hg-196.


References

* Isotope masses from: ** ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** ** {{Authority control Mercury