HOME

TheInfoList



OR:

Isotope separation is the process of concentrating specific
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s of a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
by removing other isotopes. The use of the
nuclides A nuclide (or nucleide, from nucleus, also known as nuclear species) is a class of atoms characterized by their number of protons, ''Z'', their number of neutrons, ''N'', and their nuclear energy state. The word ''nuclide'' was coined by Truman ...
produced is varied. The largest variety is used in research (e.g. in chemistry where atoms of "marker" nuclide are used to figure out reaction mechanisms). By tonnage, separating natural uranium into
enriched uranium Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238U ...
and depleted uranium is the largest application. In the following text, mainly the uranium enrichment is considered. This process is crucial in the manufacture of uranium fuel for nuclear power plants, and is also required for the creation of uranium-based
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb), producing a nuclear explosion. Both bom ...
s. Plutonium-based weapons use
plutonium Plutonium is a radioactive chemical element with the symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibi ...
produced in a nuclear reactor, which must be operated in such a way as to produce plutonium already of suitable isotopic mix or ''grade''. While different chemical elements can be purified through chemical processes, isotopes of the same element have nearly identical chemical properties, which makes this type of separation impractical, except for separation of
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
.


Separation techniques

There are three types of isotope separation techniques: * Those based directly on the
atomic weight Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a giv ...
of the isotope. * Those based on the small differences in chemical reaction rates produced by different atomic weights. * Those based on properties not directly connected to atomic weight, such as nuclear resonances. The third type of separation is still experimental; practical separation techniques all depend in some way on the atomic mass. It is therefore generally easier to separate isotopes with a larger relative mass difference. For example,
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
has twice the mass of ordinary (light)
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
and it is generally easier to purify it than to separate
uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exi ...
from the more common uranium-238. On the other extreme, separation of fissile
plutonium-239 Plutonium-239 (239Pu or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three mai ...
from the common impurity
plutonium-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. 240 ...
, while desirable in that it would allow the creation of
gun-type fission weapon Gun-type fission weapons are fission-based nuclear weapons whose design assembles their fissile material into a supercritical mass by the use of the "gun" method: shooting one piece of sub-critical material into another. Although this is someti ...
s from plutonium, is generally agreed to be impractical.


Enrichment cascades

All large-scale isotope separation schemes employ a number of similar stages which produce successively higher concentrations of the desired isotope. Each stage enriches the product of the previous step further before being sent to the next stage. Similarly, the tailings from each stage are returned to the previous stage for further processing. This creates a sequential enriching system called a cascade. There are two important factors that affect the performance of a cascade. The first is the
separation factor Separation may refer to: Films * ''Separation'' (1967 film), a British feature film written by and starring Jane Arden and directed by Jack Bond * ''La Séparation'', 1994 French film * '' A Separation'', 2011 Iranian film * ''Separation'' (2 ...
, which is a number greater than 1. The second is the number of required stages to get the desired purity.


Commercial materials

To date, large-scale commercial isotope separation of only three elements has occurred. In each case, the rarer of the two most common isotopes of an element has been concentrated for use in nuclear technology: *
Uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
isotopes have been separated to prepare
enriched uranium Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235U) has been increased through the process of isotope separation. Naturally occurring uranium is composed of three major isotopes: uranium-238 (238U ...
for use as
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat fr ...
fuel and in nuclear weapons. *
Hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
isotopes have been separated to prepare heavy water for use as a moderator in nuclear reactors. **
Tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of ...
is both a nuisance in the coolant / moderator of water moderated reactors and a valuable product, it is thus sometimes separated from the coolant *
Lithium Lithium (from el, λίθος, lithos, lit=stone) is a chemical element with the symbol Li and atomic number 3. It is a soft, silvery-white alkali metal. Under standard conditions, it is the least dense metal and the least dense solid ...
-6 has been concentrated for use in thermonuclear weapons. Tritium is commonly produced from Lithium-6 which is often enriched for this purpose, too. Some isotopically purified elements are used in smaller quantities for specialist applications, especially in the semiconductor industry, where purified
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ta ...
is used to improve crystal structure and
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
, and carbon with greater isotopic purity to make diamonds with greater thermal conductivity. Isotope separation is an important process for both peaceful and military nuclear technology, and therefore the capability that a nation has for isotope separation is of extreme interest to the intelligence community.


Alternatives

The only alternative to isotope separation is to manufacture the required isotope in its pure form. This may be done by irradiation of a suitable target, but care is needed in target selection and other factors to ensure that only the required isotope of the element of interest is produced. Isotopes of other elements are not so great a problem as they can be removed by chemical means. This is particularly relevant in the preparation of high-grade
plutonium-239 Plutonium-239 (239Pu or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three mai ...
for use in weapons. It is not practical to separate Pu-239 from Pu-240 or Pu-241.
Fissile In nuclear engineering, fissile material is material capable of sustaining a nuclear fission chain reaction. By definition, fissile material can sustain a chain reaction with neutrons of thermal energy. The predominant neutron energy may be t ...
Pu-239 is produced following neutron capture by uranium-238, but further neutron capture will produce
Pu-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. 240 ...
which is less fissile and worse, is a fairly strong neutron emitter, and
Pu-241 Plutonium-241 (241Pu or Pu-241) is an isotope of plutonium formed when plutonium-240 captures a neutron. Like some other plutonium isotopes (especially 239Pu), 241Pu is fissile, with a neutron absorption cross section about one-third greater than ...
which decays to Am-241, a strong alpha emitter that poses self-heating and radiotoxicity problems. Therefore, the uranium targets used to produce military plutonium must be irradiated for only a short time, to minimise the production of these unwanted isotopes. Conversely, blending plutonium with Pu-240 renders it less suitable for nuclear weapons. If the desired goal is not an atom bomb but running a nuclear power plant, the alternative to enrichment of uranium for use in a
Light Water Reactor The light-water reactor (LWR) is a type of thermal-neutron reactor that uses normal water, as opposed to heavy water, as both its coolant and neutron moderator; furthermore a solid form of fissile elements is used as fuel. Thermal-neutron react ...
is the use of a neutron moderator with a lower neutron absorption cross section than protium. Options include heavy water as used in CANDU type reactors or
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on lar ...
as used in
Magnox Magnox is a type of nuclear power/production reactor that was designed to run on natural uranium with graphite as the moderator and carbon dioxide gas as the heat exchange coolant. It belongs to the wider class of gas-cooled reactors. The n ...
or
RBMK The RBMK (russian: реактор большой мощности канальный, РБМК; ''reaktor bolshoy moshchnosti kanalnyy'', "high-power channel-type reactor") is a class of graphite-moderated nuclear power reactor designed and buil ...
reactors. Obtaining heavy water however also requires isotope separation, in this case of Hydrogen isotopes, which is easier due to the bigger variation in atomic weight. Both Magnox and RBMK reactors had undesirable properties when run with natural uranium, which ultimately led to the replacement of this fuel with low enriched uranium, negating the advantage of foregoing enrichment.
Pressurized Heavy Water Reactor A pressurized heavy-water reactor (PHWR) is a nuclear reactor that uses heavy water ( deuterium oxide D2O) as its coolant and neutron moderator. PHWRs frequently use natural uranium as fuel, but sometimes also use very low enriched uranium. The ...
s such as the CANDU are still in active use and
India India, officially the Republic of India (Hindi: ), is a country in South Asia. It is the seventh-largest country by area, the second-most populous country, and the most populous democracy in the world. Bounded by the Indian Ocean on the so ...
which has limited domestic uranium resources and been under a partial nuclear embargo ever since it became an atom bomb state in particular relies on heavy water moderated reactors for its nuclear power. A big downside of heavy water reactors is the enormous upfront cost of the heavy water.


Practical methods of separation


Diffusion

Often done with gases, but also with liquids, the
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
method relies on the fact that in thermal equilibrium, two isotopes with the same energy will have different average velocities. The lighter atoms (or the molecules containing them) will travel more quickly and be more likely to diffuse through a membrane. The difference in speeds is proportional to the square root of the mass ratio, so the amount of separation is small and many cascaded stages are needed to obtain high purity. This method is expensive due to the work needed to push gas through a membrane and the many stages necessary. The first large-scale separation of uranium isotopes was achieved by the
United States The United States of America (U.S.A. or USA), commonly known as the United States (U.S. or US) or America, is a country primarily located in North America. It consists of 50 states, a federal district, five major unincorporated territori ...
in large gaseous diffusion separation plants at Oak Ridge Laboratories, which were established as part of the
Manhattan Project The Manhattan Project was a research and development undertaking during World War II that produced the first nuclear weapons. It was led by the United States with the support of the United Kingdom and Canada. From 1942 to 1946, the project w ...
. These used
uranium hexafluoride Uranium hexafluoride (), (sometimes called "hex") is an inorganic compound with the formula UF6. Uranium hexafluoride is a volatile white solid that reacts with water, releasing corrosive hydrofluoric acid. The compound reacts mildly with alumin ...
gas as the process fluid. Nickel powder and electro-deposited nickel mesh diffusion barriers were pioneered by Edward Adler and Edward Norris. See
gaseous diffusion Gaseous diffusion is a technology used to produce enriched uranium by forcing gaseous uranium hexafluoride (UF6) through semipermeable membranes. This produces a slight separation between the molecules containing uranium-235 (235U) and uranium-2 ...
.


Centrifugal

Centrifugal schemes rapidly rotate the material allowing the heavier isotopes to go closer to an outer radial wall. This too is often done in gaseous form using a
Zippe-type centrifuge The Zippe-type centrifuge is a gas centrifuge designed to enrich the rare fissile isotope uranium-235 (235U) from the mixture of isotopes found in naturally occurring uranium compounds. The isotopic separation is based on the slight difference in ...
. Centrifuging plasma can separate isotopes as well as separating ranges of elements for radioactive waste reduction, nuclear reprocessing, and other purposes. The process is called "plasma mass separation"; the devices are called "plasma mass filter" or "plasma centrifuge" (not to be confused with medical). The centrifugal separation of isotopes was first suggested by Aston and Lindemann in 1919 and the first successful experiments were reported by Beams and Haynes on isotopes of chlorine in 1936. However attempts to use the technology during the
Manhattan project The Manhattan Project was a research and development undertaking during World War II that produced the first nuclear weapons. It was led by the United States with the support of the United Kingdom and Canada. From 1942 to 1946, the project w ...
were unproductive. In modern times it is the main method used throughout the world to enrich uranium and as a result remains a fairly secretive process, hindering a more widespread uptake of the technology. In general a feed of UF6 gas is connected to a cylinder that is rotated at high speed. Near the outer edge of the cylinder heavier gas molecules containing U-238 collect, while molecules containing U-235 concentrate at the center and are then fed to another cascade stage. Use of gaseous centrifugal technology to enrich isotopes is desirable as power consumption is greatly reduced when compared to more conventional techniques such as diffusion plants since fewer cascade steps are required to reach similar degrees of separation. In fact,
gas centrifuge A gas centrifuge is a device that performs isotope separation of gases. A centrifuge relies on the principles of centrifugal force accelerating molecules so that particles of different masses are physically separated in a gradient along the radiu ...
s using uranium hexafluoride have largely replaced gaseous diffusion technology for uranium enrichment. As well as requiring less energy to achieve the same separation, far smaller scale plants are possible, making them an economic possibility for a small nation attempting to produce a
nuclear weapon A nuclear weapon is an explosive device that derives its destructive force from nuclear reactions, either fission (fission bomb) or a combination of fission and fusion reactions ( thermonuclear bomb), producing a nuclear explosion. Both bom ...
. Pakistan is believed to have used this method in developing its nuclear weapons.
Vortex tube The vortex tube, also known as the Ranque-Hilsch vortex tube, is a mechanical device that separates a compressed gas into hot and cold streams. The gas emerging from the hot end can reach temperatures of , and the gas emerging from the cold end ...
s were used by
South Africa South Africa, officially the Republic of South Africa (RSA), is the Southern Africa, southernmost country in Africa. It is bounded to the south by of coastline that stretch along the Atlantic Ocean, South Atlantic and Indian Oceans; to the ...
in their
Helikon vortex separation process The Helikon vortex separation process is an aerodynamic uranium enrichment process designed around a device called a vortex tube. Paul Dirac thought of the idea for isotope separation and tried creating such a device in 1934 in the lab of Peter K ...
. The gas is injected tangentially into a chamber with special geometry that further increases its rotation to a very high rate, causing the isotopes to separate. The method is simple because vortex tubes have no moving parts, but energy intensive, about 50 times greater than gas centrifuges. A similar process, known as ''jet nozzle'', was created in Germany, with a demonstration plant built in Brazil, and they went as far as developing a site to fuel the country's nuclear plants.


Electromagnetic

Electromagnetic separation is mass spectrometry on a large scale, so it is sometimes referred to as mass spectrometry. It uses the fact that charged particles are deflected in a magnetic field and the amount of deflection depends upon the particle's mass. It is very expensive for the quantity produced, as it has an extremely low throughput, but it can allow very high purities to be achieved. This method is often used for processing small amounts of pure isotopes for research or specific use (such as
isotopic tracer Isotopic labeling (or isotopic labelling) is a technique used to track the passage of an isotope (an atom with a detectable variation in neutron count) through a reaction, metabolic pathway, or cell. The reactant is 'labeled' by replacing specific ...
s), but is impractical for industrial use. At Oak Ridge and at the
University of California, Berkeley The University of California, Berkeley (UC Berkeley, Berkeley, Cal, or California) is a public land-grant research university in Berkeley, California. Established in 1868 as the University of California, it is the state's first land-grant u ...
,
Ernest O. Lawrence Ernest Orlando Lawrence (August 8, 1901 – August 27, 1958) was an American nuclear physicist and winner of the Nobel Prize in Physics in 1939 for his invention of the cyclotron. He is known for his work on uranium-isotope separation f ...
developed electromagnetic separation for much of the uranium used in the first United States atomic bomb (see
Manhattan Project The Manhattan Project was a research and development undertaking during World War II that produced the first nuclear weapons. It was led by the United States with the support of the United Kingdom and Canada. From 1942 to 1946, the project w ...
). Devices using his principle are named
calutron A calutron is a mass spectrometer originally designed and used for separating the isotopes of uranium. It was developed by Ernest Lawrence during the Manhattan Project and was based on his earlier invention, the cyclotron. Its name was derive ...
s. After the war the method was largely abandoned as impractical. It had only been undertaken (along with diffusion and other technologies) to guarantee there would be enough material for use, whatever the cost. Its main eventual contribution to the war effort was to further concentrate material from the gaseous diffusion plants to higher levels of purity.


Laser

In this method a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The fi ...
is tuned to a wavelength which excites only one isotope of the material and ionizes those atoms preferentially. The resonant absorption of light for an isotope is dependent upon its mass and certain
hyperfine In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate energy levels and the resulting splittings in those energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nuc ...
interactions between electrons and the nucleus, allowing finely tuned lasers to interact with only one isotope. After the atom is ionized it can be removed from the sample by applying an electric field. This method is often abbreviated as AVLIS (
atomic vapor laser isotope separation Atomic vapor laser isotope separation, or AVLIS, is a method by which specially tuned lasers are used to separate isotopes of uranium using selective ionization of hyperfine transitions. A similar technology, using molecules instead of atoms, is ...
). This method has only recently been developed as laser technology has improved, and is currently not used extensively. However, it is a major concern to those in the field of nuclear proliferation because it may be cheaper and more easily hidden than other methods of isotope separation.
Tunable laser A tunable laser is a laser whose wavelength of operation can be altered in a controlled manner. While all laser gain media allow small shifts in output wavelength, only a few types of lasers allow continuous tuning over a significant wavelength ran ...
s used in AVLIS include the
dye laser A dye laser is a laser that uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 ...
and more recently
diode laser The laser diode chip removed and placed on the eye of a needle for scale A laser diode (LD, also injection laser diode or ILD, or diode laser) is a semiconductor device similar to a light-emitting diode in which a diode pumped directly with e ...
s. A second method of laser separation is known as
molecular laser isotope separation Molecular laser isotope separation (MLIS) is a method of isotope separation, where specially tuned lasers are used to separate isotopes of uranium using selective ionization of hyperfine transitions of uranium hexafluoride molecules. It is simila ...
(MLIS). In this method, an infrared laser is directed at
uranium hexafluoride Uranium hexafluoride (), (sometimes called "hex") is an inorganic compound with the formula UF6. Uranium hexafluoride is a volatile white solid that reacts with water, releasing corrosive hydrofluoric acid. The compound reacts mildly with alumin ...
gas, exciting molecules that contain a
U-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exist ...
atom. A second laser frees a fluorine atom, leaving uranium pentafluoride which then precipitates out of the gas. Cascading the MLIS stages is more difficult than with other methods because the UF5 must be fluorinated back to UF6 before being introduced into the next MLIS stage. Alternative MLIS schemes are currently being developed (using a first laser in the near-infrared or visible region) where an enrichment of over 95% can be obtained in a single stage, but the methods have not (yet) reached industrial feasibility. This method is called OP-IRMPD (Overtone Pre-excitation— IR Multiple Photon Dissociation). Finally, the '
Separation of isotopes by laser excitation Separation of isotopes by laser excitation (SILEX) is a process under development to enrich uranium on an industrial scale for nuclear reactors. It is strongly suspected that it utilizes laser condensation repression to excite the uranium-235 isoto ...
' (SILEX) process, developed by Silex Systems in Australia, has been licensed to General Electric for the development of a pilot enrichment plant. The method uses uranium hexafluoride as a feedstock, and uses magnets to separate the isotopes after one isotope is preferentially ionized. Further details of the process are not disclosed. Quite recently yet another scheme has been proposed for the
deuterium Deuterium (or hydrogen-2, symbol or deuterium, also known as heavy hydrogen) is one of two stable isotopes of hydrogen (the other being protium, or hydrogen-1). The nucleus of a deuterium atom, called a deuteron, contains one proton and one ...
separation using Trojan wavepackets in circularly polarized electromagnetic field. The process of Trojan wave packet formation by the adiabatic-rapid passage depends in ultra-sensitive way on the reduced electron and nucleus mass which with the same field frequency further leads to excitation of Trojan or anti-Trojan wavepacket depending on the kind of the isotope. Those and their giant, rotating electric dipole moments are then \pi-shifted in phase and the beam of such atoms splits in the gradient of the electric field in the analogy to
Stern–Gerlach experiment The Stern–Gerlach experiment demonstrated that the spatial orientation of angular momentum is quantized. Thus an atomic-scale system was shown to have intrinsically quantum properties. In the original experiment, silver atoms were sent throug ...
.


Chemical methods

Although isotopes of a single element are normally described as having the same chemical properties, this is not strictly true. In particular, reaction rates are very slightly affected by atomic mass. Techniques using this are most effective for light atoms such as hydrogen. Lighter isotopes tend to react or evaporate more quickly than heavy isotopes, allowing them to be separated. This is how heavy water is produced commercially, see
Girdler sulfide process The Girdler sulfide (GS) process, also known as the GeibSpevack (GS) process, is an industrial production method for filtering out of natural water the heavy water (deuterium oxide = D2O) which is used in particle research, in deuterium NMR sp ...
for details. Lighter isotopes also disassociate more rapidly under an electric field. This process in a large cascade was used at the heavy water production plant at
Rjukan Rjukan () is a town and the administrative centre of Tinn municipality in Telemark, Norway. It is situated in Vestfjorddalen, between Møsvatn and Lake Tinn, and got its name after Rjukan Falls west of the town. The Tinn municipality council gra ...
. One candidate for the largest kinetic isotopic effect ever measured at room temperature, 305, may eventually be used for the separation of
tritium Tritium ( or , ) or hydrogen-3 (symbol T or H) is a rare and radioactive isotope of hydrogen with half-life about 12 years. The nucleus of tritium (t, sometimes called a ''triton'') contains one proton and two neutrons, whereas the nucleus of ...
(T). The effects for the oxidation of tritiated formate anions to HTO were measured as: :


Gravity

Isotopes of carbon, oxygen, and nitrogen can be purified by chilling these gases or compounds nearly to their liquefaction temperature in very tall () columns. The heavier isotopes sink and the lighter isotopes rise, where they are easily collected. The process was developed in the late 1960s by scientists at Los Alamos National Laboratory. This process is also called " cryogenic distillation".


The SWU (separative work unit)

Separative Work Unit Separative work – the amount of separation done by an enrichment process – is a function of the concentrations of the feedstock, the enriched output, and the depleted tailings; and is expressed in units which are so calculated as to be proport ...
(SWU) is a complex unit which is a function of the amount of uranium processed and the degree to which it is enriched, ''i.e.'' the extent of increase in the concentration of the U-235 isotope relative to the remainder. The unit is strictly: Kilogram Separative Work Unit, and it measures the quantity of separative work (indicative of energy used in enrichment) when feed and product quantities are expressed in kilograms. The effort expended in separating a mass ''F'' of feed of assay ''xf'' into a mass ''P'' of product assay xp and waste of mass ''W'' and assay ''xw'' is expressed in terms of the number of separative work units needed, given by the expression SWU = ''WV''(''xw'') + ''PV''(''xp'') - ''FV''(''xf''), where ''V''(''x'') is the "value function," defined as ''V''(''x'') = (1 - 2''x'') ln ((1 - ''x'') /''x''). Separative work is expressed in SWUs, kg SW, or kg UTA (from the German ''Urantrennarbeit'' ) * 1 SWU = 1 kg SW = 1 kg UTA * 1 kSWU = 1.0 t SW = 1 t UTA * 1 MSWU = 1 kt SW = 1 kt UTA If, for example, you begin with 100 kilograms (220 pounds) of natural uranium, it takes about 60 SWU to produce 10 kilograms (22 pounds) of uranium enriched in U-235 content to 4.5%.


Isotope separators for research

Radioactive beams of specific isotopes are widely used in the fields of experimental physics, biology and materials science. The production and formation of these radioactive atoms into an ionic beam for study is an entire field of research carried out at many laboratories throughout the world. The first isotope separator was developed at the Copenhagen Cyclotron by Bohr and coworkers using the principle of electromagnetic separation. Today, there are many laboratories around the world that supply beams of radioactive ions for use. Arguably the principal Isotope Separator On Line (ISOL) is ISOLDE at CERN, which is a joint European facility spread across the Franco-Swiss border near the city of Geneva. This laboratory uses mainly proton spallation of uranium carbide targets to produce a wide range of radioactive fission fragments that are not found naturally on earth. During spallation (bombardment with high energy protons), a uranium carbide target is heated to several thousand degrees so that radioactive atoms produced in the nuclear reaction are released. Once out of the target, the vapour of radioactive atoms travels to an ionizer cavity. This ionizer cavity is a thin tube made of a refractory metal with a high
work function In solid-state physics, the work function (sometimes spelt workfunction) is the minimum thermodynamic work (i.e., energy) needed to remove an electron from a solid to a point in the vacuum immediately outside the solid surface. Here "immediately" ...
allowing for collisions with the walls to liberate a single electron from a free atom (
surface ionization Thermal ionization, also known as surface ionization or contact ionization, is a physical process whereby the atoms are desorbed from a hot surface, and in the process are ionized. Thermal ionization is used to make simple ion sources, for mass ...
effect). Once ionized, the radioactive species are accelerated by an electrostatic field and injected into an electromagnetic separator. As ions entering the separator are of approximately equal energy, those ions with a smaller mass will be deflected by the magnetic field by a greater amount than those with a heavier mass. This differing radius of curvature allows for isobaric purification to take place. Once purified isobarically, the ion beam is then sent to the individual experiments. In order to increase the purity of the isobaric beam, laser ionization can take place inside the ionizer cavity to selectively ionize a single element chain of interest. At CERN, this device is called the Resonance Ionization Laser Ion Source (RILIS). Currently over 60% of all experiments opt to use the RILIS to increase the purity of radioactive beams.


Beam production capability of ISOL facilities

As the production of radioactive atoms by the ISOL technique depends on the free atom chemistry of the element to be studied, there are certain beams which cannot be produced by simple proton bombardment of thick actinide targets.
Refractory In materials science, a refractory material or refractory is a material that is resistant to decomposition by heat, pressure, or chemical attack, and retains strength and form at high temperatures. Refractories are polycrystalline, polyphase, ...
metals such as tungsten and rhenium do not emerge from the target even at high temperatures due to their low vapour pressure. In order to produce these types of beams, a thin target is required. The Ion Guide Isotope Separator On Line (IGISOL) technique was developed in 1981 at the University of Jyväskylä
cyclotron A cyclotron is a type of particle accelerator invented by Ernest O. Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. Lawrence, Ernest O. ''Method and apparatus for the acceleration of ions'', filed: Jan ...
laboratory in
Finland Finland ( fi, Suomi ; sv, Finland ), officially the Republic of Finland (; ), is a Nordic country in Northern Europe. It shares land borders with Sweden to the northwest, Norway to the north, and Russia to the east, with the Gulf of B ...
. In this technique, a thin uranium target is bombarded with protons and nuclear reaction products recoil out of the target in a charged state. The recoils are stopped in a gas cell and then exit through a small hole in the side of the cell where they are accelerated electrostatically and injected into a mass separator. This method of production and extraction takes place on a shorter timescale compared to the standard ISOL technique and isotopes with short half-lives (sub millisecond) can be studied using an IGISOL. An IGISOL has also been combined with a laser ion source at the Leuven Isotope Separator On Line (LISOL) in Belgium. Thin target sources generally provide significantly lower quantities of radioactive ions than thick target sources and this is their main drawback. As experimental nuclear physics progresses, it is becoming more and more important to study the most exotic of radioactive nuclei. In order to do so, more inventive techniques are required to create nuclei with extreme proton/neutron ratios. An alternative to the ISOL techniques described here is that of fragmentation beams, where the radioactive ions are produced by fragmentation reactions on a fast beam of stable ions impinging on a thin target (usually of beryllium atoms). This technique is used, for example, at the
National Superconducting Cyclotron Laboratory The National Superconducting Cyclotron Laboratory (NSCL), located on the campus of Michigan State University was a isotope, rare isotope research facility in the United States.Bruns, Adam (January 2009How Are You Helping Companies Grow?''Site Sel ...
(NSCL) at Michigan State University and at the Radioactive Isotope Beam Factory (RIBF) at RIKEN, in Japan.


References

{{Reflist


External links


Utilization of kinetic isotope effects for the concentration of tritium
GM Brown, TJ Meyer et al., 2001.



from the
World Nuclear Association World Nuclear Association is the international organization that promotes nuclear power and supports the companies that comprise the global nuclear industry. Its members come from all parts of the nuclear fuel cycle, including uranium mining, ur ...

Annotated bibliography on electromagnetic separation of uranium isotopes form the Alsos Digital Library
German inventions