Isomorphism Conjectures In K-theory
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an
inverse mapping In mathematics, the inverse function of a function (also called the inverse of ) is a function that undoes the operation of . The inverse of exists if and only if is bijective, and if it exists, is denoted by f^ . For a function f\colon X\t ...
. Two mathematical structures are isomorphic if an isomorphism exists between them. The word isomorphism is derived from the Ancient Greek: ἴσος ''isos'' "equal", and μοÏφή ''morphe'' "form" or "shape". The interest in isomorphisms lies in the fact that two isomorphic objects have the same properties (excluding further information such as additional structure or names of objects). Thus isomorphic structures cannot be distinguished from the point of view of structure only, and may be identified. In mathematical jargon, one says that two objects are . An
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
is an isomorphism from a structure to itself. An isomorphism between two structures is a canonical isomorphism (a canonical map that is an isomorphism) if there is only one isomorphism between the two structures (as it is the case for solutions of a universal property), or if the isomorphism is much more natural (in some sense) than other isomorphisms. For example, for every prime number , all fields with elements are canonically isomorphic, with a unique isomorphism. The isomorphism theorems provide canonical isomorphisms that are not unique. The term is mainly used for
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ...
s. In this case, mappings are called homomorphisms, and a homomorphism is an isomorphism if and only if it is bijective. In various areas of mathematics, isomorphisms have received specialized names, depending on the type of structure under consideration. For example: * An isometry is an isomorphism of metric spaces. * A homeomorphism is an isomorphism of topological spaces. * A diffeomorphism is an isomorphism of spaces equipped with a differential structure, typically
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
s. * A symplectomorphism is an isomorphism of
symplectic manifold In differential geometry, a subject of mathematics, a symplectic manifold is a smooth manifold, M , equipped with a closed nondegenerate differential 2-form \omega , called the symplectic form. The study of symplectic manifolds is called sympl ...
s. * A
permutation In mathematics, a permutation of a set is, loosely speaking, an arrangement of its members into a sequence or linear order, or if the set is already ordered, a rearrangement of its elements. The word "permutation" also refers to the act or proc ...
is an automorphism of a set. * In geometry, isomorphisms and automorphisms are often called transformations, for example
rigid transformation In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points. The rigid transformations ...
s,
affine transformation In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, ...
s, projective transformations.
Category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, which can be viewed as a formalization of the concept of mapping between structures, provides a language that may be used to unify the approach to these different aspects of the basic idea.


Examples


Logarithm and exponential

Let \R^+ be the multiplicative group of positive real numbers, and let \R be the additive group of real numbers. The logarithm function \log : \R^+ \to \R satisfies \log(xy) = \log x + \log y for all x, y \in \R^+, so it is a group homomorphism. The exponential function \exp : \R \to \R^+ satisfies \exp(x+y) = (\exp x)(\exp y) for all x, y \in \R, so it too is a homomorphism. The identities \log \exp x = x and \exp \log y = y show that \log and \exp are inverses of each other. Since \log is a homomorphism that has an inverse that is also a homomorphism, \log is an isomorphism of groups. The \log function is an isomorphism which translates multiplication of positive real numbers into addition of real numbers. This facility makes it possible to multiply real numbers using a ruler and a table of logarithms, or using a slide rule with a logarithmic scale.


Integers modulo 6

Consider the group (\Z_6, +), the integers from 0 to 5 with addition
modulo In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another (called the '' modulus'' of the operation). Given two positive numbers and , modulo (often abbreviated as ) is t ...
 6. Also consider the group \left(\Z_2 \times \Z_3, +\right), the ordered pairs where the ''x'' coordinates can be 0 or 1, and the y coordinates can be 0, 1, or 2, where addition in the ''x''-coordinate is modulo 2 and addition in the ''y''-coordinate is modulo 3. These structures are isomorphic under addition, under the following scheme: \begin (0, 0) &\mapsto 0 \\ (1, 1) &\mapsto 1 \\ (0, 2) &\mapsto 2 \\ (1, 0) &\mapsto 3 \\ (0, 1) &\mapsto 4 \\ (1, 2) &\mapsto 5 \\ \end or in general (a, b) \mapsto (3 a + 4 b) \mod 6. For example, (1, 1) + (1, 0) = (0, 1), which translates in the other system as 1 + 3 = 4. Even though these two groups "look" different in that the sets contain different elements, they are indeed isomorphic: their structures are exactly the same. More generally, the
direct product In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one ta ...
of two cyclic groups \Z_m and \Z_n is isomorphic to (\Z_, +) if and only if ''m'' and ''n'' are coprime, per the
Chinese remainder theorem In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of thes ...
.


Relation-preserving isomorphism

If one object consists of a set ''X'' with a
binary relation In mathematics, a binary relation associates elements of one set, called the ''domain'', with elements of another set, called the ''codomain''. A binary relation over Set (mathematics), sets and is a new set of ordered pairs consisting of ele ...
R and the other object consists of a set ''Y'' with a binary relation S then an isomorphism from ''X'' to ''Y'' is a bijective function f : X \to Y such that: \operatorname(f(u),f(v)) \quad \text \quad \operatorname(u,v) S is reflexive, irreflexive, symmetric, antisymmetric, asymmetric, transitive,
total Total may refer to: Mathematics * Total, the summation of a set of numbers * Total order, a partial order without incomparable pairs * Total relation, which may also mean ** connected relation (a binary relation in which any two elements are comp ...
, trichotomous, a partial order, total order, well-order, strict weak order, total preorder (weak order), an
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation ...
, or a relation with any other special properties, if and only if R is. For example, R is an ordering ≤ and S an ordering \scriptstyle \sqsubseteq, then an isomorphism from ''X'' to ''Y'' is a bijective function f : X \to Y such that f(u) \sqsubseteq f(v) \quad \text \quad u \leq v. Such an isomorphism is called an or (less commonly) an . If X = Y, then this is a relation-preserving
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
.


Applications

In algebra, isomorphisms are defined for all
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ...
s. Some are more specifically studied; for example: * Linear isomorphisms between vector spaces; they are specified by invertible matrices. *
Group isomorphism In abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two grou ...
s between groups; the classification of isomorphism classes of
finite group Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked ...
s is an open problem. * Ring isomorphism between rings. * Field isomorphisms are the same as ring isomorphism between fields; their study, and more specifically the study of field automorphisms is an important part of Galois theory. Just as the
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
s of an
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of ...
form a group, the isomorphisms between two algebras sharing a common structure form a
heap Heap or HEAP may refer to: Computing and mathematics * Heap (data structure), a data structure commonly used to implement a priority queue * Heap (mathematics), a generalization of a group * Heap (programming) (or free store), an area of memory f ...
. Letting a particular isomorphism identify the two structures turns this heap into a group. In mathematical analysis, the Laplace transform is an isomorphism mapping hard
differential equations In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
into easier algebraic equations. In graph theory, an isomorphism between two graphs ''G'' and ''H'' is a bijective map ''f'' from the vertices of ''G'' to the vertices of ''H'' that preserves the "edge structure" in the sense that there is an edge from vertex ''u'' to vertex ''v'' in ''G'' if and only if there is an edge from f(u) to f(v) in ''H''. See graph isomorphism. In mathematical analysis, an isomorphism between two
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
s is a bijection preserving addition, scalar multiplication, and inner product. In early theories of logical atomism, the formal relationship between facts and true propositions was theorized by Bertrand Russell and Ludwig Wittgenstein to be isomorphic. An example of this line of thinking can be found in Russell's ''
Introduction to Mathematical Philosophy ''Introduction to Mathematical Philosophy'' is a book (1919 first edition) by philosopher Bertrand Russell, in which the author seeks to create an accessible introduction to various topics within the foundations of mathematics. According to the pr ...
''. In
cybernetics Cybernetics is a wide-ranging field concerned with circular causality, such as feedback, in regulatory and purposive systems. Cybernetics is named after an example of circular causal feedback, that of steering a ship, where the helmsperson m ...
, the good regulator or Conant–Ashby theorem is stated "Every good regulator of a system must be a model of that system". Whether regulated or self-regulating, an isomorphism is required between the regulator and processing parts of the system.


Category theoretic view

In
category theory Category theory is a general theory of mathematical structures and their relations that was introduced by Samuel Eilenberg and Saunders Mac Lane in the middle of the 20th century in their foundational work on algebraic topology. Nowadays, cate ...
, given a category ''C'', an isomorphism is a morphism f : a \to b that has an inverse morphism g : b \to a, that is, f g = 1_b and g f = 1_a. For example, a bijective linear map is an isomorphism between vector spaces, and a bijective
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
whose inverse is also continuous is an isomorphism between topological spaces, called a homeomorphism. Two categories and are
isomorphic In mathematics, an isomorphism is a structure-preserving mapping between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between them. The word is ...
if there exist functors F : C \to D and G : D \to C which are mutually inverse to each other, that is, FG = 1_D (the identity functor on ) and GF = 1_C (the identity functor on ).


Isomorphism vs. bijective morphism

In a concrete category (roughly, a category whose objects are sets (perhaps with extra structure) and whose morphisms are structure-preserving functions), such as the
category of topological spaces In mathematics, the category of topological spaces, often denoted Top, is the category whose objects are topological spaces and whose morphisms are continuous maps. This is a category because the composition of two continuous maps is again contin ...
or categories of algebraic objects (like the category of groups, the category of rings, and the
category of modules In algebra, given a ring ''R'', the category of left modules over ''R'' is the category whose objects are all left modules over ''R'' and whose morphisms are all module homomorphisms between left ''R''-modules. For example, when ''R'' is the ring o ...
), an isomorphism must be bijective on the underlying sets. In algebraic categories (specifically, categories of varieties in the sense of universal algebra), an isomorphism is the same as a homomorphism which is bijective on underlying sets. However, there are concrete categories in which bijective morphisms are not necessarily isomorphisms (such as the category of topological spaces).


Relation with equality

In certain areas of mathematics, notably category theory, it is valuable to distinguish between on the one hand and on the other. Equality is when two objects are exactly the same, and everything that is true about one object is true about the other, while an isomorphism implies everything that is true about a designated part of one object's structure is true about the other's. For example, the sets A = \left\ \quad \text \quad B = \ are ; they are merely different representations—the first an intensional one (in set builder notation), and the second extensional (by explicit enumeration)—of the same subset of the integers. By contrast, the sets \ and \ are not —the first has elements that are letters, while the second has elements that are numbers. These are isomorphic as sets, since finite sets are determined up to isomorphism by their
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
(number of elements) and these both have three elements, but there are many choices of isomorphism—one isomorphism is :\text \mapsto 1, \text \mapsto 2, \text \mapsto 3, while another is \text \mapsto 3, \text \mapsto 2, \text \mapsto 1, and no one isomorphism is intrinsically better than any other.A, B, C have a conventional order, namely alphabetical order, and similarly 1, 2, 3 have the order from the integers, and thus one particular isomorphism is "natural", namely \text \mapsto 1, \text \mapsto 2, \text \mapsto 3. More formally, as these are isomorphic, but not naturally isomorphic (there are multiple choices of isomorphism), while as they are naturally isomorphic (there is a unique isomorphism, given above), since
finite total order In mathematics, a total or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive) ...
s are uniquely determined up to unique isomorphism by
cardinality In mathematics, the cardinality of a set is a measure of the number of elements of the set. For example, the set A = \ contains 3 elements, and therefore A has a cardinality of 3. Beginning in the late 19th century, this concept was generalized ...
. This intuition can be formalized by saying that any two finite totally ordered sets of the same cardinality have a natural isomorphism, the one that sends the least element of the first to the least element of the second, the least element of what remains in the first to the least element of what remains in the second, and so forth, but in general, pairs of sets of a given finite cardinality are not naturally isomorphic because there is more than one choice of map—except if the cardinality is 0 or 1, where there is a unique choice.
In fact, there are precisely 3! = 6 different isomorphisms between two sets with three elements. This is equal to the number of
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
s of a given three-element set (which in turn is equal to the order of the symmetric group on three letters), and more generally one has that the set of isomorphisms between two objects, denoted \operatorname(A,B), is a torsor for the automorphism group of ''A,'' \operatorname(A) and also a torsor for the automorphism group of ''B.'' In fact, automorphisms of an object are a key reason to be concerned with the distinction between isomorphism and equality, as demonstrated in the effect of change of basis on the identification of a vector space with its dual or with its double dual, as elaborated in the sequel.
On this view and in this sense, these two sets are not equal because one cannot consider them : one can choose an isomorphism between them, but that is a weaker claim than identity—and valid only in the context of the chosen isomorphism. Another example is more formal and more directly illustrates the motivation for distinguishing equality from isomorphism: the distinction between a finite-dimensional vector space ''V'' and its
dual space In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by const ...
V^* = \left\ of linear maps from ''V'' to its field of scalars \mathbf. These spaces have the same dimension, and thus are isomorphic as abstract vector spaces (since algebraically, vector spaces are classified by dimension, just as sets are classified by cardinality), but there is no "natural" choice of isomorphism V \mathrel V^*. If one chooses a basis for ''V'', then this yields an isomorphism: For all u, v \in V, v \mathrel \phi_v \in V^* \quad \text \quad \phi_v(u) = v^\mathrm u. This corresponds to transforming a column vector (element of ''V'') to a row vector (element of ''V''*) by transpose, but a different choice of basis gives a different isomorphism: the isomorphism "depends on the choice of basis". More subtly, there a map from a vector space ''V'' to its double dual V^ = \left\ that does not depend on the choice of basis: For all v \in V \text \varphi \in V^*, v \mathrel x_v \in V^ \quad \text \quad x_v(\phi) = \phi(v). This leads to a third notion, that of a natural isomorphism: while V and V^ are different sets, there is a "natural" choice of isomorphism between them. This intuitive notion of "an isomorphism that does not depend on an arbitrary choice" is formalized in the notion of a natural transformation; briefly, that one may identify, or more generally map from, a finite-dimensional vector space to its double dual, V \mathrel V^, for vector space in a consistent way. Formalizing this intuition is a motivation for the development of category theory. However, there is a case where the distinction between natural isomorphism and equality is usually not made. That is for the objects that may be characterized by a universal property. In fact, there is a unique isomorphism, necessarily natural, between two objects sharing the same universal property. A typical example is the set of real numbers, which may be defined through infinite decimal expansion, infinite binary expansion, Cauchy sequences, Dedekind cuts and many other ways. Formally, these constructions define different objects which are all solutions with the same universal property. As these objects have exactly the same properties, one may forget the method of construction and consider them as equal. This is what everybody does when referring to " set of the real numbers". The same occurs with
quotient space Quotient space may refer to a quotient set when the sets under consideration are considered as spaces. In particular: *Quotient space (topology), in case of topological spaces * Quotient space (linear algebra), in case of vector spaces *Quotient ...
s: they are commonly constructed as sets of
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements a ...
es. However, referring to a set of sets may be counterintuitive, and so quotient spaces are commonly considered as a pair of a set of undetermined objects, often called "points", and a surjective map onto this set. If one wishes to distinguish between an arbitrary isomorphism (one that depends on a choice) and a natural isomorphism (one that can be done consistently), one may write \, \approx \, for an
unnatural isomorphism In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure (i.e., the composition of morphisms) of the categories involved. Hence, a natu ...
and for a natural isomorphism, as in V \approx V^* and V \cong V^. This convention is not universally followed, and authors who wish to distinguish between unnatural isomorphisms and natural isomorphisms will generally explicitly state the distinction. Generally, saying that two objects are is reserved for when there is a notion of a larger (ambient) space that these objects live in. Most often, one speaks of equality of two subsets of a given set (as in the integer set example above), but not of two objects abstractly presented. For example, the 2-dimensional unit sphere in 3-dimensional space S^2 := \left\ and the Riemann sphere \widehat which can be presented as the one-point compactification of the complex plane \Complex \cup \ as the complex projective line (a quotient space) \mathbf_^1 := \left(\Complex^2\setminus \\right) / \left(\Complex^*\right) are three different descriptions for a mathematical object, all of which are isomorphic, but not because they are not all subsets of a single space: the first is a subset of \R^3, the second is \Complex \cong \R^2Being precise, the identification of the complex numbers with the real plane, \Complex \cong \R \cdot 1 \oplus \R \cdot i = \R^2 depends on a choice of i; one can just as easily choose (-i), which yields a different identification—formally,
complex conjugation In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
is an automorphism—but in practice one often assumes that one has made such an identification.
plus an additional point, and the third is a
subquotient In the mathematical fields of category theory and abstract algebra, a subquotient is a quotient object of a subobject. Subquotients are particularly important in abelian categories, and in group theory, where they are also known as sections, thou ...
of \Complex^2. In the context of category theory, objects are usually at most isomorphic—indeed, a motivation for the development of category theory was showing that different constructions in
homology theory In mathematics, homology is a general way of associating a sequence of algebraic objects, such as abelian groups or modules, with other mathematical objects such as topological spaces. Homology groups were originally defined in algebraic topolog ...
yielded equivalent (isomorphic) groups. Given maps between two objects ''X'' and ''Y'', however, one asks if they are equal or not (they are both elements of the set \hom(X, Y), hence equality is the proper relationship), particularly in
commutative diagram 350px, The commutative diagram used in the proof of the five lemma. In mathematics, and especially in category theory, a commutative diagram is a diagram such that all directed paths in the diagram with the same start and endpoints lead to the s ...
s. See also: homotopy type theory, in which isomorphisms can be treated as kinds of equality.


See also

* Bisimulation *
Equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. Each equivalence relation ...
* Heap (mathematics) * Isometry * Isomorphism class * Isomorphism theorem * Universal property *
Coherent isomorphism In mathematics, specifically in homotopy theory and (higher) category theory, coherency is the standard that equalities or diagrams must satisfy when they hold " up to homotopy" or "up to isomorphism". The adjectives such as "pseudo-" and "lax- ...


Notes


References


Further reading

*


External links

* * {{Authority control Morphisms Equivalence (mathematics)