HOME

TheInfoList



OR:

Iron-based superconductors (FeSC) are
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
-containing chemical compounds whose
superconducting Superconductivity is a set of physical properties observed in certain materials where Electrical resistance and conductance, electrical resistance vanishes and magnetic field, magnetic flux fields are expelled from the material. Any material e ...
properties were discovered in 2006. In 2008, led by recently discovered iron
pnictide A pnictogen ( or ; from grc, πνῑ́γω "to choke" and -gen, "generator") is any of the chemical elements in group 15 of the periodic table. Group 15 is also known as the nitrogen group or nitrogen family. Group 15 consists of the el ...
compounds (originally known as
oxypnictide In chemistry, oxypnictides are a class of materials composed of oxygen, a pnictogen (group-V, especially phosphorus and arsenic) and one or more other elements. Although this group of compounds has been recognized since 1995, interest in these com ...
s), they were in the first stages of experimentation and implementation. (Previously most
high-temperature superconductor High-temperature superconductors (abbreviated high-c or HTS) are defined as materials that behave as superconductors at temperatures above , the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previ ...
s were
cuprate Cuprate loosely refers to a material that can be viewed as containing anionic copper complexes. Examples include tetrachloridocuprate ( uCl4sup>2−), the superconductor YBa2Cu3O7, and the organocuprates (e.g., dimethylcuprate u(CH3)2sup> ...
s and being based on layers of
copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pinkis ...
and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as wel ...
sandwiched between other substances (La, Ba, Hg)). This new type of superconductors is based instead on conducting layers of
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
and a
pnictide A pnictogen ( or ; from grc, πνῑ́γω "to choke" and -gen, "generator") is any of the chemical elements in group 15 of the periodic table. Group 15 is also known as the nitrogen group or nitrogen family. Group 15 consists of the el ...
(
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
s in
group 15 A pnictogen ( or ; from grc, πνῑ́γω "to choke" and -gen, "generator") is any of the chemical elements in group 15 of the periodic table. Group 15 is also known as the nitrogen group or nitrogen family. Group 15 consists of the el ...
of the
periodic table The periodic table, also known as the periodic table of the (chemical) elements, is a rows and columns arrangement of the chemical elements. It is widely used in chemistry, physics, and other sciences, and is generally seen as an icon of ch ...
, here typically
arsenic Arsenic is a chemical element with the symbol As and atomic number 33. Arsenic occurs in many minerals, usually in combination with sulfur and metals, but also as a pure elemental crystal. Arsenic is a metalloid. It has various allotropes, but ...
(As) and
phosphorus Phosphorus is a chemical element with the symbol P and atomic number 15. Elemental phosphorus exists in two major forms, white phosphorus and red phosphorus, but because it is highly reactive, phosphorus is never found as a free element on Ear ...
(P)) and seems to show promise as the next generation of high temperature superconductors."Iron Exposed as High-Temperature Superconductor"
Scientific American. June 2008
Much of the interest is because the new compounds are very different from the cuprates and may help lead to a theory of non- BCS-theory superconductivity. More recently these have been called the ferropnictides. The first ones found belong to the group of
oxypnictide In chemistry, oxypnictides are a class of materials composed of oxygen, a pnictogen (group-V, especially phosphorus and arsenic) and one or more other elements. Although this group of compounds has been recognized since 1995, interest in these com ...
s. Some of the compounds have been known since 1995, and their semiconductive properties have been known and patented since 2006. It has also been found that some iron
chalcogen The chalcogens (ore forming) ( ) are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioact ...
s superconduct. The undoped ''β''-FeSe is the simplest iron-based superconductor but with the diverse properties. It has a critical temperature (''T''c) of 8 K at normal pressure, and 36.7 K under high pressure and by means of intercalation. The combination of both intercalation and pressure results in re-emerging superconductivity at 48 (see and references therein). A subset of iron-based superconductors with properties similar to the oxypnictides, known as the
122 iron arsenide The 122 iron arsenide unconventional superconductors are part of a new class of iron-based superconductors. They form in the tetragonal I4/mmm, ThCr2Si2 type, crystal structure. The shorthand name "122" comes from their stoichiometry; the 122s hav ...
s, attracted attention in 2008 due to their relative ease of synthesis. The
oxypnictide In chemistry, oxypnictides are a class of materials composed of oxygen, a pnictogen (group-V, especially phosphorus and arsenic) and one or more other elements. Although this group of compounds has been recognized since 1995, interest in these com ...
s such as LaOFeAs are often referred to as the '1111' pnictides.
Iron pnictide superconductors crystallize into the eAslayered structure alternating with spacer or charge reservoir block. The compounds can thus be classified into “1111” system RFeAsO (R: the rare earth element) including LaFeAsO, SmFeAsO, PrFeAsO, etc.; “122” type BaFe2As2, SrFe2As2 or CaFe2As2; “111” type LiFeAs, NaFeAs, and LiFeP. Doping or applied pressure will transform the compounds into superconductors. Compounds such as Sr2ScFePO3 discovered in 2009 are referred to as the '42622' family, as FePSr2ScO3. Noteworthy is the synthesis of (Ca4Al2O6−y)(Fe2Pn2) (or Al-42622(Pn); Pn = As and P) using high-pressure synthesis technique. Al-42622(Pn) exhibit superconductivity for both Pn = As and P with the transition temperatures of 28.3 K and 17.1 K, respectively. The a-lattice parameters of Al-42622(Pn) (a = 3.713 Å and 3.692 Å for Pn = As and P, respectively) are smallest among the iron-pnictide superconductors. Correspondingly, Al-42622(As) has the smallest As-Fe-As bond angle (102.1°) and the largest As distance from the Fe planes (1.5 Å). High-pressure technique also yields (Ca3Al2O5−y)(Fe2Pn2) (Pn = As and P), the first reported iron-based superconductors with the perovskite-based '32522' structure. The transition temperature (Tc) is 30.2 K for Pn = As and 16.6 K for Pn = P. The emergence of superconductivity is ascribed to the small tetragonal a-axis lattice constant of these materials. From these results, an empirical relationship was established between the a-axis lattice constant and Tc in iron-based superconductors. In 2009, it was shown that undoped iron pnictides had a magnetic quantum critical point deriving from competition between electronic localization and itinerancy.


Phase diagrams

Similarly to superconducting cuprates, the properties of iron based superconductors change dramatically with doping. Parent compounds of FeSC are usually metals (unlike the cuprates) but, similarly to cuprates, are ordered antiferromagnetically that often termed as a
spin-density wave Spin-density wave (SDW) and charge-density wave (CDW) are names for two similar low-energy ordered states of solids. Both these states occur at low temperature in anisotropic, low-dimensional materials or in metals that have high densities of sta ...
(SDW). The
superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
(SC) emerges upon either hole or electron doping. In general, the
phase diagram A phase diagram in physical chemistry, engineering, mineralogy, and materials science is a type of chart used to show conditions (pressure, temperature, volume, etc.) at which thermodynamically distinct phases (such as solid, liquid or gaseous ...
is similar to the cuprates.


Superconductivity at high temperature

Superconducting transition temperatures are listed in the tables (some at high pressure). BaFe1.8Co0.2As2 is predicted to have an
upper critical field For a given temperature, the critical field refers to the maximum magnetic field strength below which a material remains superconducting. Superconductivity is characterized both by perfect conductivity (zero resistance) and by the complete expulsio ...
of 43 tesla from the measured coherence length of 2.8 nm. In 2011, Japanese scientists made a discovery which increased a metal compound's superconductivity by immersing iron-based compounds in hot alcoholic beverages such as red wine. Earlier reports indicated that excess Fe is the cause of the bicollinear antiferromagnetic order and is not in favor of superconductivity. Further investigation revealed that weak acid has the ability to deintercalate the excess Fe from the interlayer sites. Therefore, weak acid annealing suppresses the antiferromagnetic correlation by deintercalating the excess Fe and, hence superconductivity is achieved. There is an empirical correlation of the transition temperature with
electronic band structure In solid-state physics, the electronic band structure (or simply band structure) of a solid describes the range of energy levels that electrons may have within it, as well as the ranges of energy that they may not have (called ''band gaps'' or '' ...
: the Tc maximum is observed when some of the
Fermi surface In condensed matter physics, the Fermi surface is the surface in reciprocal space which separates occupied from unoccupied electron states at zero temperature. The shape of the Fermi surface is derived from the periodicity and symmetry of the cryst ...
stays in proximity to
Lifshitz Lifshitz (or Lifschitz) is a surname, which may be derived from the Polish city of Głubczyce (German: Leobschütz). The surname has many variants, including: , , Lifshits, Lifshuts, Lefschetz; Lipschitz (Lipshitz), Lipshits, Lipchitz, Lipschutz ( ...
topological transition. Similar correlation has been later reported for high-Tc cuprates that indicates possible similarity of the superconductivity mechanisms in these two families of
high temperature superconductors High-temperature superconductors (abbreviated high-c or HTS) are defined as materials that behave as superconductors at temperatures above , the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previo ...
.


Thin films

The critical temperature is increased further in thin-films of iron chalcogenides on suitable substrates. In 2015, a Tc of around 105-111 K was observed in thin films of iron selenide grown on
strontium titanate Strontium titanate is an oxide of strontium and titanium with the chemical formula Sr Ti O3. At room temperature, it is a centrosymmetric paraelectric material with a perovskite structure. At low temperatures it approaches a ferroelectric phase ...
.


See also

*
Andreev reflection Andreev reflection (AR), named after the Russian physicist Alexander F. Andreev, is a type of particle scattering which occurs at interfaces between a superconductor (S) and a normal state material (N). It is a charge-transfer process by which ...
*
Charge-transfer complex In chemistry, a charge-transfer (CT) complex or electron-donor-acceptor complex describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces ...
*
Color superconductivity Color superconductivity is a phenomenon where matter carries color charge without loss, similar to how conventional superconductors carry electric charge without loss. It is predicted to occur in quark matter if the baryon density is sufficientl ...
in quarks *
Composite reaction texturing Composite or compositing may refer to: Materials * Composite material, a material that is made from several different substances ** Metal matrix composite, composed of metal and other parts ** Cermet, a composite of ceramic and metallic materials ...
*
Conventional superconductor Conventional superconductors are materials that display superconductivity as described by BCS theory or its extensions. This is in contrast to unconventional superconductors, which do not. Conventional superconductors can be either type-I or type ...
*
Covalent superconductor Covalent superconductors are superconducting materials where the atoms are linked by covalent bonds. The first such material was boron-doped synthetic diamond grown by the high-pressure high-temperature (HPHT) method.L. Boeri, J. Kortus and O. K. ...
*
High-temperature superconductivity High-temperature superconductors (abbreviated high-c or HTS) are defined as materials that behave as superconductors at temperatures above , the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previ ...
* Homes's law *
Kondo effect In physics, the Kondo effect describes the scattering of conduction electrons in a metal due to magnetic impurities, resulting in a characteristic change i.e. a minimum in electrical resistivity with temperature. The cause of the effect was fir ...
*
Little–Parks effect The Little–Parks effect was discovered in 1962 by William A. Little and Roland D. Parks in experiments with empty and thin-walled superconducting cylinder (geometry), cylinders subjected to a parallel magnetic field.W. A. Little and R. D. Parks, ...
*
Magnetic sail A magnetic sail is a proposed method of spacecraft propulsion that uses a static magnetic field to deflect a plasma wind of charged particles radiated by the Sun or a Star thereby transferring momentum to accelerate or decelerate a spacecraft. ...
*
National Superconducting Cyclotron Laboratory The National Superconducting Cyclotron Laboratory (NSCL), located on the campus of Michigan State University was a isotope, rare isotope research facility in the United States.Bruns, Adam (January 2009How Are You Helping Companies Grow?''Site Sel ...
*
Oxypnictide In chemistry, oxypnictides are a class of materials composed of oxygen, a pnictogen (group-V, especially phosphorus and arsenic) and one or more other elements. Although this group of compounds has been recognized since 1995, interest in these com ...
*
Proximity effect Proximity effect may refer to: * Proximity effect (atomic physics) *Proximity effect (audio), an increase in bass or low frequency response when a sound source is close to a microphone * ''Proximity Effect'' (comics), a comic book series written by ...
*
Room-temperature superconductor A room-temperature superconductor is a material that is capable of exhibiting superconductivity at operating temperatures above , that is, temperatures that can be reached and easily maintained in an everyday environment. , the material with the h ...
*
Rutherford cable Rutherford may refer to: Places Australia * Rutherford, New South Wales, a suburb of Maitland * Rutherford (Parish), New South Wales, a civil parish of Yungnulgra County Canada * Mount Rutherford, Jasper National Park * Rutherford, Edmonton ...
*
Spallation Neutron Source The Spallation Neutron Source (SNS) is an accelerator-based neutron source facility in the U.S. that provides the most intense pulsed neutron beams in the world for scientific research and industrial development.In 2007, SNS was entered into thG ...
* Superconducting radio frequency * Superconductor classification *
Superfluid film Superfluidity is a phenomenon where a fluid, or a fraction of a fluid, loses all its viscosity and can flow without resistance. This article is about thin films of such superfluids. Superfluid helium, for example, forms a 30-nm-thick film on ...
*
Technological applications of superconductivity Some of the technological applications of superconductivity include: * the production of sensitive magnetometers based on SQUIDs (superconducting quantum interference devices) * fast digital circuits (including those based on Josephson junctions an ...
*
Timeline of low-temperature technology The following is a timeline of low-temperature technology and cryogenic technology (refrigeration down to –273.15 °C, –459.67 °F or 0 K). It also lists important milestones in thermometry, thermodynamics, statistical physics and ca ...
*
Type-I superconductor The interior of a bulk superconductor cannot be penetrated by a weak magnetic field, a phenomenon known as the Meissner effect. When the applied magnetic field becomes too large, superconductivity breaks down. Superconductors can be divided int ...
*
Type-II superconductor In superconductivity, a type-II superconductor is a superconductor that exhibits an intermediate phase of mixed ordinary and superconducting properties at intermediate temperature and fields above the superconducting phases. It also features the ...
*
Unconventional superconductor Unconventional superconductors are materials that display superconductivity which does not conform to either the conventional BCS theory or Nikolay Bogolyubov's theory or its extensions. History The superconducting properties of CeCu2Si2, a ty ...


References

{{Reflist, 30em Superconductors Iron compounds