HOME

TheInfoList



OR:

Genetics is the study of genes and tries to explain what they are and how they work. Genes are how living
organism In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells (cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and ...
s inherit features or traits from their ancestors; for example, children usually look like their parents because they have inherited their parents' genes. Genetics tries to identify which traits are inherited and to explain how these traits are passed from generation to generation. Some traits are part of an organism's
physical appearance Human physical appearance is the outward phenotype or look of human beings. There are infinite variations in human phenotypes, though society reduces the variability to distinct categories. The physical appearance of humans, in particular those a ...
, such as a person's eye color, height or weight. Other sorts of traits are not easily seen and include blood types or resistance to diseases. Some traits are inherited through our genes, so tall and thin people tend to have tall and thin children. Other traits come from interactions between our genes and the environment, so a child might inherit the tendency to be tall, but if they are poorly nourished, they will still be short. The way our genes and environment interact to produce a trait can be complicated. For example, the chances of somebody dying of
cancer Cancer is a group of diseases involving abnormal cell growth with the potential to invade or spread to other parts of the body. These contrast with benign tumors, which do not spread. Possible signs and symptoms include a lump, abnormal b ...
or heart disease seems to depend on both their genes and their lifestyle. Genes are made from a long
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bioche ...
called DNA, which is copied and inherited across generations. DNA is made of simple units that line up in a particular order within this large molecule. The order of these units carries genetic information, similar to how the order of letters on a page carries information. The language used by DNA is called the
genetic code The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
, which lets organisms read the information in the genes. This information is the instructions for constructing and operating a living organism. The information within a particular gene is not always exactly the same between one organism and another, so different copies of a gene do not always give exactly the same instructions. Each unique form of a single gene is called an
allele An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chro ...
. As an example, one allele for the gene for hair color could instruct the body to produce much pigment, producing black hair, while a different allele of the same gene might give garbled instructions that fail to produce any pigment, giving white hair.
Mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA replication, DNA or viral repl ...
s are random changes in genes and can create new alleles. Mutations can also produce new traits, such as when mutations to an allele for black hair produce a new allele for white hair. This appearance of new traits is important in
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
.


Genes and inheritance

Genes are pieces of DNA that contain information for the synthesis of ribonucleic acids (RNAs) or polypeptides. Genes are inherited as units, with two parents dividing out copies of their genes to their offspring. Humans have two copies of each of their genes, but each egg or sperm cell only gets ''one'' of those copies for each gene. An egg and sperm join to form a complete set of genes. The resulting offspring has the same number of genes as their parents, but for any gene, one of their two copies comes from their father, and one from their mother. The effects of this mixing depend on the types (the
allele An allele (, ; ; modern formation from Greek ἄλλος ''állos'', "other") is a variation of the same sequence of nucleotides at the same place on a long DNA molecule, as described in leading textbooks on genetics and evolution. ::"The chro ...
s) of the gene. If the father has two copies of an allele for red hair, and the mother has two copies for brown hair, all their children get the two alleles that give different instructions, one for red hair and one for brown. The hair color of these children depends on how these alleles work together. If one allele dominates the instructions from another, it is called the ''dominant'' allele, and the allele that is overridden is called the ''recessive'' allele. In the case of a daughter with alleles for both red and brown hair, brown is dominant and she ends up with brown hair.Melanocortin 1 Receptor
Accessed 27 November 2010
Although the red color allele is still there in this brown-haired girl, it doesn't show. This is a difference between what you see on the surface (the traits of an organism, called its
phenotype In genetics, the phenotype () is the set of observable characteristics or traits of an organism. The term covers the organism's morphology or physical form and structure, its developmental processes, its biochemical and physiological pr ...
) and the genes within the organism (its genotype). In this example you can call the allele for brown "B" and the allele for red "b". (It is normal to write dominant alleles with capital letters and recessive ones with lower-case letters.) The brown hair daughter has the "brown hair phenotype" but her genotype is Bb, with one copy of the B allele, and one of the b allele. Now imagine that this woman grows up and has children with a brown-haired man who also has a Bb genotype. Her eggs will be a mixture of two types, one sort containing the B allele, and one sort the b allele. Similarly, her partner will produce a mix of two types of sperm containing one or the other of these two alleles. When the transmitted genes are joined up in their offspring, these children have a chance of getting either brown or red hair, since they could get a genotype of BB = brown hair, Bb = brown hair or bb = red hair. In this generation, there is, therefore, a chance of the recessive allele showing itself in the phenotype of the children—some of them may have red hair like their grandfather. Many traits are inherited in a more complicated way than the example above. This can happen when there are several genes involved, each contributing a small part to the result. Tall people tend to have tall children because their children get a package of many alleles that each contribute a bit to how much they grow. However, there are not clear groups of "short people" and "tall people", like there are groups of people with brown or red hair. This is because of the large number of genes involved; this makes the trait very variable and people are of many different heights. Despite a common misconception, the green/blue eye traits are also inherited in this complex inheritance model.Eye color is more complex than two genes
Athro Limited, Accessed 27 November 2010
Inheritance can also be complicated when the trait depends on the interaction between genetics and environment. For example, malnutrition does not change traits like eye color, but can stunt growth.


How genes work


Genes make proteins

The function of genes is to provide the information needed to make molecules called
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s in cells. Cells are the smallest independent parts of organisms: the human body contains about 100 trillion cells, while very small organisms like
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
are just a single cell. A cell is like a miniature and very complex factory that can make all the parts needed to produce a copy of itself, which happens when cells divide. There is a simple division of labor in cells—genes give instructions and proteins carry out these instructions, tasks like building a new copy of a cell, or repairing the damage.The Structures of Life
National Institute of General Medical Sciences, Accessed 20 May 2008
Each type of protein is a specialist that only does one job, so if a cell needs to do something new, it must make a new protein to do this job. Similarly, if a cell needs to do something faster or slower than before, it makes more or less of the protein responsible. Genes tell cells what to do by telling them which proteins to make and in what amounts. Proteins are made of a chain of 20 different types of
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
molecules. This chain folds up into a compact shape, rather like an untidy ball of string. The shape of the protein is determined by the sequence of amino acids along its chain and it is this shape that, in turn, determines what the protein does. For example, some proteins have parts of their surface that perfectly match the shape of another molecule, allowing the protein to bind to this molecule very tightly. Other proteins are
enzyme Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products ...
s, which are like tiny machines that alter other molecules. The information in DNA is held in the sequence of the repeating units along the DNA chain. What is DNA?
Genetics Home Reference, Accessed 16 May 2008
These units are four types of
nucleotide Nucleotides are organic molecules consisting of a nucleoside and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecule ...
s (A,T,G and C) and the sequence of nucleotides stores information in an alphabet called the
genetic code The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
. When a gene is read by a cell the DNA sequence is copied into a very similar molecule called RNA (this process is called
transcription Transcription refers to the process of converting sounds (voice, music etc.) into letters or musical notes, or producing a copy of something in another medium, including: Genetics * Transcription (biology), the copying of DNA into RNA, the fir ...
). Transcription is controlled by other DNA sequences (such as promoters), which show a cell where genes are, and control how often they are copied. The RNA copy made from a gene is then fed through a structure called a ribosome, which translates the sequence of nucleotides in the RNA into the correct sequence of amino acids and joins these amino acids together to make a complete protein chain. The new protein then folds up into its active form. The process of moving information from the language of RNA into the language of amino acids is called
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
.DNA-RNA-Protein
Nobelprize.org, Accessed 20 May 2008
If the sequence of the nucleotides in a gene changes, the sequence of the amino acids in the protein it produces may also change—if part of a gene is deleted, the protein produced is shorter and may not work anymore. This is the reason why different alleles of a gene can have different effects on an organism. As an example, hair color depends on how much of a dark substance called
melanin Melanin (; from el, μέλας, melas, black, dark) is a broad term for a group of natural pigments found in most organisms. Eumelanin is produced through a multistage chemical process known as melanogenesis, where the oxidation of the amino ...
is put into the hair as it grows. If a person has a normal set of the genes involved in making melanin, they make all the proteins needed and they grow dark hair. However, if the alleles for a particular protein have different sequences and produce proteins that can't do their jobs, no melanin is produced and the person has white skin and hair (
albinism Albinism is the congenital absence of melanin in an animal or plant resulting in white hair, feathers, scales and skin and pink or blue eyes. Individuals with the condition are referred to as albino. Varied use and interpretation of the term ...
).


Genes are copied

Genes are copied each time a cell divides into two new cells. The process that copies DNA is called
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
. It is through a similar process that a child inherits genes from its parents when a copy from the mother is mixed with a copy from the father. DNA can be copied very easily and accurately because each piece of DNA can direct the assembly of a new copy of its information. This is because DNA is made of two strands that pair together like the two sides of a zipper. The nucleotides are in the center, like the teeth in the zipper, and pair up to hold the two strands together. Importantly, the four different sorts of nucleotides are different shapes, so for the strands to close up properly, an A nucleotide must go opposite a T nucleotide, and a G opposite a C. This exact pairing is called
base pairing A base pair (bp) is a fundamental unit of double-stranded nucleic acids consisting of two nucleobases bound to each other by hydrogen bonds. They form the building blocks of the DNA double helix and contribute to the folded structure of both DNA ...
. When DNA is copied, the two strands of the old DNA are pulled apart by enzymes; then they pair up with new nucleotides and then close. This produces two new pieces of DNA, each containing one strand from the old DNA and one newly made strand. This process is not predictably perfect as proteins attach to a nucleotide while they are building and cause a change in the sequence of that gene. These changes in the DNA sequence are called
mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA replication, DNA or viral repl ...
s. Mutations produce new alleles of genes. Sometimes these changes stop the functioning of that gene or make it serve another advantageous function, such as the melanin genes discussed above. These mutations and their effects on the traits of organisms are one of the causes of
evolution Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation ...
.


Genes and evolution

A population of organisms evolves when an inherited trait becomes more common or less common over time. For instance, all the mice living on an island would be a single population of mice: some with white fur, some gray. If over generations, white mice became more frequent and gray mice less frequent, then the color of the fur in this population of mice would be
evolving Evolution is change in the heritable characteristics of biological populations over successive generations. These characteristics are the expressions of genes, which are passed on from parent to offspring during reproduction. Variation t ...
. In terms of genetics, this is called an increase in
allele frequency Allele frequency, or gene frequency, is the relative frequency of an allele (variant of a gene) at a particular locus in a population, expressed as a fraction or percentage. Specifically, it is the fraction of all chromosomes in the population tha ...
. Alleles become more or less common either by chance in a process called
genetic drift Genetic drift, also known as allelic drift or the Wright effect, is the change in the frequency of an existing gene variant (allele) in a population due to random chance. Genetic drift may cause gene variants to disappear completely and there ...
or by
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Cha ...
. In natural selection, if an allele makes it more likely for an organism to survive and reproduce, then over time this allele becomes more common. But if an allele is harmful, natural selection makes it less common. In the above example, if the island were getting colder each year and snow became present for much of the time, then the allele for white fur would favor survival since predators would be less likely to see them against the snow, and more likely to see the gray mice. Over time white mice would become more and more frequent, while gray mice less and less. Mutations create new alleles. These alleles have new DNA sequences and can produce proteins with new properties. So if an island was populated entirely by black mice, mutations could happen creating alleles for white fur. The combination of mutations creating new alleles at random, and natural selection picking out those that are useful, causes an adaptation. This is when organisms change in ways that help them to survive and reproduce. Many such changes, studied in evolutionary developmental biology, affect the way the embryo develops into an adult body.


Inherited diseases

Some diseases are hereditary and run in families; others, such as
infectious disease An infection is the invasion of tissues by pathogens, their multiplication, and the reaction of host tissues to the infectious agent and the toxins they produce. An infectious disease, also known as a transmissible disease or communicable di ...
s, are caused by the environment. Other diseases come from a combination of genes and the environment.
Genetic disorder A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorders ...
s are diseases that are caused by a single allele of a gene and are inherited in families. These include
Huntington's disease Huntington's disease (HD), also known as Huntington's chorea, is a neurodegenerative disease that is mostly inherited. The earliest symptoms are often subtle problems with mood or mental abilities. A general lack of coordination and an uns ...
, cystic fibrosis or
Duchenne muscular dystrophy Duchenne muscular dystrophy (DMD) is a severe type of muscular dystrophy that primarily affects boys. Muscle weakness usually begins around the age of four, and worsens quickly. Muscle loss typically occurs first in the thighs and pelvis follow ...
. Cystic fibrosis, for example, is caused by mutations in a single gene called ''
CFTR Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein and anion channel in vertebrates that is encoded by the ''CFTR'' gene. Geneticist Lap-Chee Tsui and his team identified the CFTR gene in 1989 as the gene linked wi ...
'' and is inherited as a recessive trait. Other diseases are influenced by genetics, but the genes a person gets from their parents only change their risk of getting a disease. Most of these diseases are inherited in a complex way, with either multiple genes involved, or coming from both genes and the environment. As an example, the risk of
breast cancer Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin, milk rejection, fluid coming from the nipple, a newly inverted nipple, or a r ...
is 50 times higher in the families most at risk, compared to the families least at risk. This variation is probably due to a large number of alleles, each changing the risk a little bit. Several of the genes have been identified, such as ''
BRCA1 Breast cancer type 1 susceptibility protein is a protein that in humans is encoded by the ''BRCA1'' () gene. Orthologs are common in other vertebrate species, whereas invertebrate genomes may encode a more distantly related gene. ''BRCA1'' is a ...
'' and '' BRCA2'', but not all of them. However, although some of the risks are genetic, the risk of this cancer is also increased by being overweight, heavy alcohol consumption and not exercising. A woman's risk of breast cancer, therefore, comes from a large number of alleles interacting with her environment, so it is very hard to predict.


Genetic engineering

Since traits come from the genes in a cell, putting a new piece of DNA into a cell can produce a new trait. This is how genetic engineering works. For example, rice can be given genes from a maize and a soil bacteria so the rice produces beta-carotene, which the body converts to vitamin A. This can help children with Vitamin A deficiency. Another gene being put into some crops comes from the bacterium '' Bacillus thuringiensis''; the gene makes a protein that is an insecticide. The insecticide kills insects that eat the plants but is harmless to people. In these plants, the new genes are put into the plant before it is grown, so the genes are in every part of the plant, including its seeds. The plant's offspring inherit the new genes, which has led to concern about the spread of new traits into wild plants. The kind of technology used in genetic engineering is also being developed to treat people with
genetic disorder A genetic disorder is a health problem caused by one or more abnormalities in the genome. It can be caused by a mutation in a single gene (monogenic) or multiple genes (polygenic) or by a chromosomal abnormality. Although polygenic disorders ...
s in an experimental medical technique called
gene therapy Gene therapy is a medical field which focuses on the genetic modification of cells to produce a therapeutic effect or the treatment of disease by repairing or reconstructing defective genetic material. The first attempt at modifying human DN ...
. However, here the new, properly working gene is put in targeted cells, not altering the chance of future children inheriting the disease causing alleles.


See also

* Common misunderstandings of genetics *
Epigenetics In biology, epigenetics is the study of stable phenotypic changes (known as ''marks'') that do not involve alterations in the DNA sequence. The Greek prefix '' epi-'' ( "over, outside of, around") in ''epigenetics'' implies features that are ...
*
Whole genome sequencing Whole genome sequencing (WGS), also known as full genome sequencing, complete genome sequencing, or entire genome sequencing, is the process of determining the entirety, or nearly the entirety, of the DNA sequence of an organism's genome at a ...
*
History of genetics The history of genetics dates from the classical era with contributions by Pythagoras, Hippocrates, Aristotle, Epicurus, and others. Modern genetics began with the work of the Augustinian friar Gregor Johann Mendel. His work on pea plants, publis ...
* Genetics in simple English * Outline of genetics *
Molecular genetics Molecular genetics is a sub-field of biology that addresses how differences in the structures or expression of DNA molecules manifests as variation among organisms. Molecular genetics often applies an "investigative approach" to determine the ...
* Predictive medicine


References


External links


Introduction to Genetics
University of Utah
Introduction to Genes and Disease
NCBI open book
Genetics glossary
A talking glossary of genetic terms.
Khan Academy on YouTube


Genetics of human eye color: An interactive introduction
Transcribe and translate a gene
University of Utah
StarGenetics
software simulates mating experiments between organisms that are genetically different across a range of traits {{DEFAULTSORT:Genetics, Introduction to