HOME

TheInfoList



OR:

A gauge theory is a type of
theory A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be s ...
in
physics Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which r ...
. The word gauge means a
measurement Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared ...
, a thickness, an in-between distance (as in
railroad tracks A railway track (British English and UIC terminology) or railroad track (American English), also known as permanent way or simply track, is the structure on a railway or railroad consisting of the rails, fasteners, railroad ties (sleepers, ...
), or a resulting number of units per certain parameter (a number of loops in an inch of fabric or a number of lead balls in a pound of ammunition). Modern theories describe physical forces in terms of
fields Fields may refer to: Music * Fields (band), an indie rock band formed in 2006 * Fields (progressive rock band), a progressive rock band formed in 1971 * ''Fields'' (album), an LP by Swedish-based indie rock band Junip (2010) * "Fields", a song b ...
, e.g., the
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classical c ...
, the
gravitational field In physics, a gravitational field is a model used to explain the influences that a massive body extends into the space around itself, producing a force on another massive body. Thus, a gravitational field is used to explain gravitational phenome ...
, and fields that describe forces between the
elementary particles In particle physics, an elementary particle or fundamental particle is a subatomic particle that is not composed of other particles. Particles currently thought to be elementary include electrons, the fundamental fermions (quarks, leptons, anti ...
. A general feature of these field theories is that the fundamental fields cannot be directly measured; however, some associated quantities can be measured, such as charges, energies, and velocities. For example, say you cannot measure the diameter of a lead ball, but you can determine how many lead balls, which are equal in every way, are required to make a pound. Using the number of balls, the density of lead, and the formula for calculating the volume of a sphere from its diameter, one could indirectly determine the diameter of a single lead ball. In field theories, different configurations of the unobservable fields can result in identical observable quantities. A transformation from one such field configuration to another is called a gauge transformation; the lack of change in the measurable quantities, despite the field being transformed, is a property called gauge invariance. For example, if you could measure the color of lead balls and discover that when you change the color, you still fit the same number of balls in a pound, the property of "color" would show gauge invariance. Since any kind of invariance under a field transformation is considered a
symmetry Symmetry (from grc, συμμετρία "agreement in dimensions, due proportion, arrangement") in everyday language refers to a sense of harmonious and beautiful proportion and balance. In mathematics, "symmetry" has a more precise definit ...
, gauge invariance is sometimes called gauge symmetry. Generally, any theory that has the property of gauge invariance is considered a gauge theory. For example, in electromagnetism the electric field E and the magnetic field B are observable, while the potentials ''V'' ("voltage") and A (the
vector potential In vector calculus, a vector potential is a vector field whose curl is a given vector field. This is analogous to a ''scalar potential'', which is a scalar field whose gradient is a given vector field. Formally, given a vector field v, a ''vecto ...
) are not. Under a gauge transformation in which a constant is added to ''V'', no observable change occurs in E or B. With the advent of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
in the 1920s, and with successive advances in
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
, the importance of gauge transformations has steadily grown. Gauge theories constrain the laws of physics, because all the changes induced by a gauge transformation have to cancel each other out when written in terms of observable quantities. Over the course of the 20th century, physicists gradually realized that all forces (
fundamental interaction In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electrom ...
s) arise from the constraints imposed by ''local'' gauge symmetries, in which case the transformations vary from point to point in
space and time Space and Time or Time and Space, or ''variation'', may refer to: * '' Space and time'' or ''time and space'' or ''spacetime'', any mathematical model that combines space and time into a single interwoven continuum * Philosophy of space and time S ...
.
Perturbative In quantum mechanics, perturbation theory is a set of approximation schemes directly related to mathematical perturbation for describing a complicated quantum system in terms of a simpler one. The idea is to start with a simple system for whi ...
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
(usually employed for scattering theory) describes forces in terms of force-mediating particles called gauge bosons. The nature of these particles is determined by the nature of the gauge transformations. The culmination of these efforts is the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
, a quantum field theory that accurately predicts all of the fundamental interactions except
gravity In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stro ...
.


History and importance

The earliest field theory having a gauge symmetry was Maxwell's formulation, in 1864–65, of
electrodynamics In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
("
A Dynamical Theory of the Electromagnetic Field "A Dynamical Theory of the Electromagnetic Field" is a paper by James Clerk Maxwell on electromagnetism, published in 1865. ''(Paper read at a meeting of the Royal Society on 8 December 1864).'' In the paper, Maxwell derives an electromagnetic wav ...
"). The importance of this symmetry remained unnoticed in the earliest formulations. Similarly unnoticed,
Hilbert David Hilbert (; ; 23 January 1862 – 14 February 1943) was a German mathematician, one of the most influential mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many ...
had derived Einstein's equations of general relativity by postulating a symmetry under any change of coordinates, just as Einstein was completing his work. Later
Hermann Weyl Hermann Klaus Hugo Weyl, (; 9 November 1885 – 8 December 1955) was a German mathematician, theoretical physicist and philosopher. Although much of his working life was spent in Zürich, Switzerland, and then Princeton, New Jersey, he is assoc ...
, inspired by success in Einstein's
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, conjectured (incorrectly, as it turned out) in 1919 that invariance under the change of scale or "gauge" (a term inspired by the various
track gauge In rail transport, track gauge (in American English, alternatively track gage) is the distance between the two rails of a railway track. All vehicles on a rail network must have wheelsets that are compatible with the track gauge. Since many d ...
s of railroads) might also be a local symmetry of electromagnetism. Although Weyl's choice of the gauge was incorrect, the name "gauge" stuck to the approach. After the development of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, ...
, Weyl, Fock and
London London is the capital and largest city of England and the United Kingdom, with a population of just under 9 million. It stands on the River Thames in south-east England at the head of a estuary down to the North Sea, and has been a majo ...
modified their gauge choice by replacing the scale factor with a change of wave
phase Phase or phases may refer to: Science *State of matter, or phase, one of the distinct forms in which matter can exist *Phase (matter), a region of space throughout which all physical properties are essentially uniform * Phase space, a mathematic ...
, and applying it successfully to electromagnetism. Gauge symmetry was generalized mathematically in 1954 by Chen Ning Yang and Robert Mills in an attempt to describe the strong nuclear forces. This idea, dubbed
Yang–Mills theory In mathematical physics, Yang–Mills theory is a gauge theory based on a special unitary group SU(''N''), or more generally any compact, reductive Lie algebra. Yang–Mills theory seeks to describe the behavior of elementary particles using ...
, later found application in the
quantum field theory In theoretical physics, quantum field theory (QFT) is a theoretical framework that combines classical field theory, special relativity, and quantum mechanics. QFT is used in particle physics to construct physical models of subatomic particles and ...
of the
weak force Weak may refer to: Songs * Weak (AJR song), "Weak" (AJR song), 2016 * Weak (Melanie C song), "Weak" (Melanie C song), 2011 * Weak (SWV song), "Weak" (SWV song), 1993 * Weak (Skunk Anansie song), "Weak" (Skunk Anansie song), 1995 * "Weak", a song ...
, and its unification with electromagnetism in the
electroweak In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism and the weak interaction. Although these two forces appear very differe ...
theory. The importance of gauge theories for physics stems from their tremendous success in providing a unified framework to describe the quantum-mechanical behavior of
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
, the
weak force Weak may refer to: Songs * Weak (AJR song), "Weak" (AJR song), 2016 * Weak (Melanie C song), "Weak" (Melanie C song), 2011 * Weak (SWV song), "Weak" (SWV song), 1993 * Weak (Skunk Anansie song), "Weak" (Skunk Anansie song), 1995 * "Weak", a song ...
and the
strong force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
. This gauge theory, known as the
Standard Model The Standard Model of particle physics is the theory describing three of the four known fundamental forces (electromagnetism, electromagnetic, weak interaction, weak and strong interactions - excluding gravity) in the universe and classifying a ...
, accurately describes experimental predictions regarding three of the four
fundamental force In physics, the fundamental interactions, also known as fundamental forces, are the interactions that do not appear to be reducible to more basic interactions. There are four fundamental interactions known to exist: the gravitational and electrom ...
s of nature.


In classical physics


Electromagnetism

Historically, the first example of gauge symmetry to be discovered was classical
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
. A static electric field can be described in terms of an
electric potential The electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in ...
(voltage, V) that is defined at every point in space, and in practical work it is conventional to take the Earth as a physical reference that defines the zero level of the potential, or ground. But only ''differences'' in potential are physically measurable, which is the reason that a
voltmeter A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit. Ana ...
must have two probes, and can only report the voltage difference between them. Thus one could choose to define all voltage differences relative to some other standard, rather than the Earth, resulting in the addition of a constant offset. If the potential V is a solution to
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. ...
then, after this gauge transformation, the new potential V \rightarrow V+C is also a solution to Maxwell's equations and no experiment can distinguish between these two solutions. In other words, the laws of physics governing electricity and magnetism (that is, Maxwell equations) are invariant under gauge transformation. Maxwell's equations have a gauge symmetry. Generalizing from static electricity to electromagnetism, we have a second potential, the
magnetic vector potential In classical electromagnetism, magnetic vector potential (often called A) is the vector quantity defined so that its curl is equal to the magnetic field: \nabla \times \mathbf = \mathbf. Together with the electric potential ''φ'', the magnetic v ...
A, which can also undergo gauge transformations. These transformations may be local. That is, rather than adding a constant onto ''V'', one can add a function that takes on different values at different points in space and time. If A is also changed in certain corresponding ways, then the same E (electric) and B (magnetic) fields result. The detailed mathematical relationship between the fields E and B and the potentials ''V'' and A is given in the article
Gauge fixing In the physics of gauge theories, gauge fixing (also called choosing a gauge) denotes a mathematical procedure for coping with redundant degrees of freedom in field variables. By definition, a gauge theory represents each physically distinct c ...
, along with the precise statement of the nature of the gauge transformation. The relevant point here is that the fields remain the same under the gauge transformation, and therefore
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. ...
are still satisfied. Gauge symmetry is closely related to
charge conservation In physics, charge conservation is the principle that the total electric charge in an isolated system never changes. The net quantity of electric charge, the amount of positive charge minus the amount of negative charge in the universe, is alwa ...
. Suppose that there existed some process by which one could briefly violate conservation of charge by creating a charge ''q'' at a certain point in space, 1, moving it to some other point 2, and then destroying it. We might imagine that this process was consistent with conservation of energy. We could posit a rule stating that creating the charge required an input of energy ''E''1=''qV''1 and destroying it released ''E''2=''qV''2, which would seem natural since ''qV'' measures the extra energy stored in the electric field because of the existence of a charge at a certain point. Outside of the interval during which the particle exists, conservation of energy would be satisfied, because the net energy released by creation and destruction of the particle, ''qV''2-''qV''1, would be equal to the work done in moving the particle from 1 to 2, ''qV''2-''qV''1. But although this scenario salvages conservation of energy, it violates gauge symmetry. Gauge symmetry requires that the laws of physics be invariant under the transformation V \rightarrow V+C, which implies that no experiment should be able to measure the absolute potential, without reference to some external standard such as an electrical ground. But the proposed rules ''E''1=''qV''1 and ''E''2=''qV''2 for the energies of creation and destruction ''would'' allow an experimenter to determine the absolute potential, simply by comparing the energy input required to create the charge ''q'' at a particular point in space in the case where the potential is V and V+C respectively. The conclusion is that if gauge symmetry holds, and energy is conserved, then charge must be conserved.


General relativity

As discussed above, the gauge transformations for classical (i.e., non-quantum mechanical)
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
are arbitrary coordinate transformations. Robert M. Wald (1984) ''General Relativity''. University of Chicago Press: 260. Technically, the transformations must be invertible, and both the transformation and its inverse must be smooth, in the sense of being
differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
an arbitrary number of times.


An example of a symmetry in a physical theory: translation invariance

Some global symmetries under changes of coordinate predate both general relativity and the concept of a gauge. For example,
Galileo Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642) was an Italian astronomer, physicist and engineer, sometimes described as a polymath. Commonly referred to as Galileo, his name was pronounced (, ). He was ...
and Newton introduced the notion of
translation invariance In geometry, to translate a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by . In physics and mathematics, continuous translational symmetry is the invariance of a system of equat ...
, an advancement from the Aristotelian concept that different places in space, such as the earth versus the heavens, obeyed different physical rules. Suppose, for example, that one observer examines the properties of a hydrogen atom on Earth, the other—on the Moon (or any other place in the universe), the observer will find that their hydrogen atoms exhibit completely identical properties. Again, if one observer had examined a hydrogen atom today and the other—100 years ago (or any other time in the past or in the future), the two experiments would again produce completely identical results. The invariance of the properties of a hydrogen atom with respect to the time and place where these properties were investigated is called translation invariance. Recalling our two observers from different ages: the time in their experiments is shifted by 100 years. If the time when the older observer did the experiment was ''t'', the time of the modern experiment is ''t''+100 years. Both observers discover the same laws of physics. Because light from hydrogen atoms in distant galaxies may reach the earth after having traveled across space for billions of years, in effect one can do such observations covering periods of time almost all the way back to the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, and they show that the laws of physics have always been the same. In other words, if in the theory we change the time ''t'' to ''t''+100 years (or indeed any other time shift) the theoretical predictions do not change.


Another example of a symmetry: the invariance of Einstein's field equation under arbitrary coordinate transformations

In Einstein's
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, coordinates like ''x'', ''y'', ''z'', and ''t'' are not only "relative" in the global sense of translations like t \rightarrow t+C, rotations, etc., but become completely arbitrary, so that, for example, one can define an entirely new time-like coordinate according to some arbitrary rule such as t \rightarrow t+t^3/t_0^2, where t_0 has dimensions of time, and yet
Einstein's equations In the general theory of relativity, the Einstein field equations (EFE; also known as Einstein's equations) relate the geometry of spacetime to the distribution of matter within it. The equations were published by Einstein in 1915 in the form ...
will have the same form. Invariance of the form of an equation under an arbitrary coordinate transformation is customarily referred to as
general covariance In theoretical physics, general covariance, also known as diffeomorphism covariance or general invariance, consists of the invariance of the ''form'' of physical laws under arbitrary differentiable coordinate transformations. The essential idea is ...
, and equations with this property are referred to as written in the covariant form. General covariance is a special case of gauge invariance. Maxwell's equations can also be expressed in a generally covariant form, which is as invariant under general coordinate transformation as Einstein's field equation.


In quantum mechanics


Quantum electrodynamics

Until the advent of quantum mechanics, the only well known example of gauge symmetry was in electromagnetism, and the general significance of the concept was not fully understood. For example, it was not clear whether it was the fields E and B or the potentials ''V'' and A that were the fundamental quantities; if the former, then the gauge transformations could be considered as nothing more than a mathematical trick.


Aharonov–Bohm experiment

In quantum mechanics, a particle such as an electron is also described as a wave. For example, if the
double-slit experiment In modern physics, the double-slit experiment is a demonstration that light and matter can display characteristics of both classically defined waves and particles; moreover, it displays the fundamentally probabilistic nature of quantum mechanics ...
is performed with electrons, then a wave-like interference pattern is observed. The electron has the highest probability of being detected at locations where the parts of the wave passing through the two slits are in phase with one another, resulting in
constructive interference In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive ...
. The frequency of the electron ''wave'' is related to the kinetic energy of an individual electron ''particle'' via the quantum-mechanical relation ''E'' = ''hf''. If there are no electric or magnetic fields present in this experiment, then the electron's energy is constant, and, for example, there will be a high probability of detecting the electron along the central axis of the experiment, where by symmetry the two parts of the wave are in phase. But now suppose that the electrons in the experiment are subject to electric or magnetic fields. For example, if an electric field were imposed on one side of the axis but not on the other, the results of the experiment would be affected. The part of the electron wave passing through that side oscillates at a different rate, since its energy has had −''eV'' added to it, where −''e'' is the charge of the electron and ''V'' the electrical potential. The results of the experiment will be different, because phase relationships between the two parts of the electron wave have changed, and therefore the locations of constructive and destructive interference will be shifted to one side or the other. It is the electric potential that occurs here, not the electric field, and this is a manifestation of the fact that it is the potentials and not the fields that are of fundamental significance in quantum mechanics.


Explanation with potentials

It is even possible to have cases in which an experiment's results differ when the potentials are changed, even if no charged particle is ever exposed to a different field. One such example is the
Aharonov–Bohm effect The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanical phenomenon in which an electrically charged particle is affected by an electromagnetic potential (φ, A), despite being confine ...
, shown in the figure. In this example, turning on the solenoid only causes a magnetic field B to exist within the solenoid. But the solenoid has been positioned so that the electron cannot possibly pass through its interior. If one believed that the fields were the fundamental quantities, then one would expect that the results of the experiment would be unchanged. In reality, the results are different, because turning on the solenoid changed the vector potential A in the region that the electrons do pass through. Now that it has been established that it is the potentials ''V'' and A that are fundamental, and not the fields E and B, we can see that the gauge transformations, which change ''V'' and A, have real physical significance, rather than being merely mathematical artifacts.


Gauge invariance: the results of the experiments are independent of the choice of the gauge for the potentials

Note that in these experiments, the only quantity that affects the result is the ''difference'' in phase between the two parts of the electron wave. Suppose we imagine the two parts of the electron wave as tiny clocks, each with a single hand that sweeps around in a circle, keeping track of its own phase. Although this cartoon ignores some technical details, it retains the physical phenomena that are important here. If both clocks are sped up by the same amount, the phase relationship between them is unchanged, and the results of experiments are the same. Not only that, but it is not even necessary to change the speed of each clock by a ''fixed'' amount. We could change the angle of the hand on each clock by a ''varying'' amount θ, where θ could depend on both the position in space and on time. This would have no effect on the result of the experiment, since the final observation of the location of the electron occurs at a single place and time, so that the phase shift in each electron's "clock" would be the same, and the two effects would cancel out. This is another example of a gauge transformation: it is local, and it does not change the results of experiments.


Summary

In summary, gauge symmetry attains its full importance in the context of quantum mechanics. In the application of quantum mechanics to electromagnetism, i.e.,
quantum electrodynamics In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and spec ...
, gauge symmetry applies to both electromagnetic waves and electron waves. These two gauge symmetries are in fact intimately related. If a gauge transformation θ is applied to the electron waves, for example, then one must also apply a corresponding transformation to the potentials that describe the electromagnetic waves. Donald H. Perkins (1982)
Introduction to High-Energy Physics
'. Addison-Wesley: 332.
Gauge symmetry is required in order to make quantum electrodynamics a
renormalizable Renormalization is a collection of techniques in quantum field theory, the statistical mechanics of fields, and the theory of self-similarity, self-similar geometric structures, that are used to treat infinity, infinities arising in calculated ...
theory, i.e., one in which the calculated predictions of all physically measurable quantities are finite.


Types of gauge symmetries

The description of the electrons in the subsection above as little clocks is in effect a statement of the mathematical rules according to which the phases of electrons are to be added and subtracted: they are to be treated as ordinary numbers, except that in the case where the result of the calculation falls outside the range of 0≤θ<360°, we force it to "wrap around" into the allowed range, which covers a circle. Another way of putting this is that a phase angle of, say, 5° is considered to be completely equivalent to an angle of 365°. Experiments have verified this testable statement about the interference patterns formed by electron waves. Except for the "wrap-around" property, the algebraic properties of this mathematical structure are exactly the same as those of the ordinary real numbers. In mathematical terminology, electron phases form an
Abelian group In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commut ...
under addition, called the circle group or ''U''(1). "Abelian" means that addition commutes, so that θ + φ = φ + θ.
Group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
means that addition associates and has an
identity element In mathematics, an identity element, or neutral element, of a binary operation operating on a set is an element of the set that leaves unchanged every element of the set when the operation is applied. This concept is used in algebraic structures su ...
, namely "0". Also, for every phase there exists an inverse such that the sum of a phase and its inverse is 0. Other examples of abelian groups are the integers under addition, 0, and negation, and the nonzero fractions under product, 1, and reciprocal. As a way of visualizing the choice of a gauge, consider whether it is possible to tell if a cylinder has been twisted. If the cylinder has no bumps, marks, or scratches on it, we cannot tell. We could, however, draw an arbitrary curve along the cylinder, defined by some function θ(''x''), where ''x'' measures distance along the axis of the cylinder. Once this arbitrary choice (the choice of gauge) has been made, it becomes possible to detect it if someone later twists the cylinder. In 1954, Chen Ning Yang and Robert Mills proposed to generalize these ideas to noncommutative groups. A noncommutative gauge group can describe a field that, unlike the electromagnetic field, interacts with itself. For example,
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
states that gravitational fields have energy, and
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws o ...
concludes that energy is equivalent to mass. Hence a gravitational field induces a further gravitational field. The
nuclear forces The nuclear force (or nucleon–nucleon interaction, residual strong force, or, historically, strong nuclear force) is a force that acts between the protons and neutrons of atoms. Neutrons and protons, both nucleons, are affected by the nucl ...
also have this self-interacting property.


Gauge bosons

Surprisingly, gauge symmetry can give a deeper explanation for the existence of interactions, such as the electric and nuclear interactions. This arises from a type of gauge symmetry relating to the fact that all particles of a given type are experimentally indistinguishable from one another. Imagine that Alice and Betty are identical twins, labeled at birth by bracelets reading A and B. Because the girls are identical, nobody would be able to tell if they had been switched at birth; the labels A and B are arbitrary, and can be interchanged. Such a permanent interchanging of their identities is like a global gauge symmetry. There is also a corresponding local gauge symmetry, which describes the fact that from one moment to the next, Alice and Betty could swap roles while nobody was looking, and nobody would be able to tell. If we observe that Mom's favorite vase is broken, we can only infer that the blame belongs to one twin or the other, but we cannot tell whether the blame is 100% Alice's and 0% Betty's, or vice versa. If Alice and Betty are in fact quantum-mechanical particles rather than people, then they also have wave properties, including the property of superposition, which allows waves to be added, subtracted, and mixed arbitrarily. It follows that we are not even restricted to complete swaps of identity. For example, if we observe that a certain amount of energy exists in a certain location in space, there is no experiment that can tell us whether that energy is 100% A's and 0% B's, 0% A's and 100% B's, or 20% A's and 80% B's, or some other mixture. The fact that the symmetry is local means that we cannot even count on these proportions to remain fixed as the particles propagate through space. The details of how this is represented mathematically depend on technical issues relating to the
spins The spins (as in having "the spins")Diane Marie Leiva. ''The Florida State University College of Education''Women's Voices on College Drinking: The First-Year College Experience"/ref> is an adverse reaction of intoxication that causes a state of ...
of the particles, but for our present purposes we consider a spinless particle, for which it turns out that the mixing can be specified by some arbitrary choice of gauge θ(''x''), where an angle θ = 0° represents 100% A and 0% B, θ = 90° means 0% A and 100% B, and intermediate angles represent mixtures. According to the principles of quantum mechanics, particles do not actually have trajectories through space. Motion can only be described in terms of waves, and the momentum ''p'' of an individual particle is related to its wavelength λ by ''p'' = ''h''/''λ''. In terms of empirical measurements, the wavelength can only be determined by observing a change in the wave between one point in space and another nearby point (mathematically, by differentiation). A wave with a shorter wavelength oscillates more rapidly, and therefore changes more rapidly between nearby points. Now suppose that we arbitrarily fix a gauge at one point in space, by saying that the energy at that location is 20% A's and 80% B's. We then measure the two waves at some other, nearby point, in order to determine their wavelengths. But there are two entirely different reasons that the waves could have changed. They could have changed because they were oscillating with a certain wavelength, or they could have changed because the gauge function changed from a 20–80 mixture to, say, 21–79. If we ignore the second possibility, the resulting theory does not work; strange discrepancies in momentum will show up, violating the principle of conservation of momentum. Something in the theory must be changed. Again there are technical issues relating to spin, but in several important cases, including electrically charged particles and particles interacting via nuclear forces, the solution to the problem is to impute physical reality to the gauge function θ(''x''). We say that if the function θ oscillates, it represents a new type of quantum-mechanical wave, and this new wave has its own momentum ''p'' = ''h''/''λ'', which turns out to patch up the discrepancies that otherwise would have broken conservation of momentum. In the context of electromagnetism, the particles A and B would be charged particles such as electrons, and the quantum mechanical wave represented by θ would be the electromagnetic field. (Here we ignore the technical issues raised by the fact that electrons actually have spin 1/2, not spin zero. This oversimplification is the reason that the gauge field θ comes out to be a scalar, whereas the electromagnetic field is actually represented by a vector consisting of ''V'' and A.) The result is that we have an explanation for the presence of electromagnetic interactions: if we try to construct a gauge-symmetric theory of identical, non-interacting particles, the result is not self-consistent, and can only be repaired by adding electric and magnetic fields that cause the particles to interact. Although the function θ(''x'') describes a wave, the laws of quantum mechanics require that it also have particle properties. In the case of electromagnetism, the particle corresponding to electromagnetic waves is the photon. In general, such particles are called
gauge bosons In particle physics, a gauge boson is a bosonic elementary particle that acts as the force carrier for elementary fermions. Elementary particles, whose interactions are described by a gauge theory, interact with each other by the exchange of gauge ...
, where the term "boson" refers to a particle with integer spin. In the simplest versions of the theory, gauge bosons are massless, but it is also possible to construct versions in which they have mass, as is the case for the gauge bosons that transmit the nuclear decay forces.


References


Further reading

These books are intended for general readers and employ the barest minimum of mathematics. * 't Hooft, Gerard: "Gauge Theories of the Force between Elementary Particles," ''Scientific American'', 242(6):104–138 (June 1980).
"Press Release: The 1999 Nobel Prize in Physics"
''Nobelprize.org''. Nobel Media AB 2013. 20 Aug 2013. * Schumm, Bruce (2004) ''Deep Down Things''. Johns Hopkins University Press. A serious attempt by a physicist to explain gauge theory and the Standard Model. * Feynman, Richard (2006) '' QED: The Strange Theory of Light and Matter''. Princeton University Press. A nontechnical description of quantum field theory (not specifically about gauge theory). {{DEFAULTSORT:Gauge theory, Introduction to Quantum chromodynamics Differential topology Symmetry