Intraoperative electron radiation therapy is the application of
electron
The electron ( or ) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family,
and are generally thought to be elementary particles because they have no kn ...
radiation
In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes:
* ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
directly to the residual
tumor
A neoplasm () is a type of abnormal and excessive growth of tissue. The process that occurs to form or produce a neoplasm is called neoplasia. The growth of a neoplasm is uncoordinated with that of the normal surrounding tissue, and persists ...
or tumor bed during cancer surgery.
Electron beams
Cathode rays or electron beam (e-beam) are streams of electrons observed in discharge tubes. If an evacuated glass tube is equipped with two electrodes and a voltage is applied, glass behind the positive electrode is observed to glow, due to ele ...
are useful for
intraoperative
The perioperative period is the time period of a patient's surgical procedure. It commonly includes ward admission, anesthesia, surgery, and recovery. Perioperative may refer to the three phases of surgery: preoperative, intraoperative, and posto ...
radiation treatment because, depending on the
electron energy, the dose falls off rapidly behind the target site, therefore sparing underlying healthy tissue.
IOERT has been called "precision radiotherapy," because the physician has direct visualization of the tumor and can exclude normal tissue from the field while protecting critical structures within the field and underlying the target volume. One advantage of IOERT is that it can be given at the time of surgery when microscopic residual tumor cells are most vulnerable to destruction. Also, IOERT is often used in combination with
external beam radiotherapy
External beam radiotherapy (EBRT) is the most common form of radiotherapy (radiation therapy). The patient sits or lies on a couch and an external source of ionizing radiation is pointed at a particular part of the body. In contrast to brachyt ...
(EBR) because it results in less integral doses and shorter treatment times.
Medical uses
IOERT has a long history of clinical applications, with promising results, in the management of solid tumors (e.g.,
pancreatic cancer
Pancreatic cancer arises when cell (biology), cells in the pancreas, a glandular organ behind the stomach, begin to multiply out of control and form a Neoplasm, mass. These cancerous cells have the malignant, ability to invade other parts of t ...
, locally advanced and recurrent
rectal cancer,
breast tumor
A breast mass, also known as a breast lump, is a localized swelling that feel different from the surrounding tissue. Breast pain, nipple discharge, or skin changes may be present. Concerning findings include masses that are hard, do not move e ...
s,
sarcoma
A sarcoma is a malignant tumor, a type of cancer that arises from transformed cells of mesenchymal (connective tissue) origin. Connective tissue is a broad term that includes bone, cartilage, fat, vascular, or hematopoietic tissues, and sarcom ...
s, and selected
gynaecologic and
genitourinary malignancies,
neuroblastoma
Neuroblastoma (NB) is a type of cancer that forms in certain types of nerve tissue. It most frequently starts from one of the adrenal glands but can also develop in the neck, chest, abdomen, or spine. Symptoms may include bone pain, a lump in the ...
s and
brain tumor
A brain tumor occurs when abnormal cells form within the brain. There are two main types of tumors: malignant tumors and benign (non-cancerous) tumors. These can be further classified as primary tumors, which start within the brain, and seconda ...
s. In virtually every tumor site, electron IORT improves local control, reducing the need for additional surgeries or interventions. The following is a list of disease sites currently treated by IOERT:
Breast cancer
Since 1975, breast cancer rates have declined in the U.S., largely due to
mammogram
Mammography (also called mastography) is the process of using low-energy X-rays (usually around 30 kVp) to examine the human breast for diagnosis and screening. The goal of mammography is the early detection of breast cancer, typically through d ...
s and the use of adjuvant treatments such as
radiotherapy
Radiation therapy or radiotherapy, often abbreviated RT, RTx, or XRT, is a therapy using ionizing radiation, generally provided as part of cancer treatment to control or kill malignant cells and normally delivered by a linear accelerator. Radia ...
. Local recurrence rates are greatly reduced by postoperative radiotherapy, which translates into improved survival: Preventing four local recurrences can prevent one breast cancer death. In one of the largest published studies so far called (ELIOT), researchers found that after treating 574 patients with full-dose IOERT with 21
Gy, at a median follow-up of 20 months, there was an in-breast tumor recurrence rate of only 1.05%. Other studies show that IOERT provides acceptable results when treating breast cancer in low-risk patients. More research is needed for defining the optimal dose of IOERT, alone or in combination with EBRT, and for determining when it may be appropriate to use it as part of the treatment for higher risk patients.
Colorectal cancer
Over the past 30 years, treatment of locally advanced colorectal cancer has evolved, particularly in the area of local control – stopping the spread of cancer from the tumor site. IOERT shows promising results. When combined with preoperative external beam irradiation plus
chemotherapy
Chemotherapy (often abbreviated to chemo and sometimes CTX or CTx) is a type of cancer treatment that uses one or more anti-cancer drugs (chemotherapeutic agents or alkylating agents) as part of a standardized chemotherapy regimen. Chemotherap ...
and maximal
surgical resection
Segmental resection (or segmentectomy) is a surgical procedure to remove part of an organ or gland, as a sub-type of a resection, which might involve removing the whole body part. It may also be used to remove a tumor and normal tissue around i ...
, it may be a successful component in the treatment of high-risk patients with locally advanced primary or locally recurrent cancers.
Gynecological cancer
Studies suggest that electron IORT may play an important and useful role in the treatment of patients with locally advanced and recurrent gynecologic cancers, especially for patients with locally recurrent cancer after treatment for their primary lesion. Further research into radiation doses and how to best combine IOERT with other interventions will help to define the sequencing of treatment and the patients who would most benefit from receiving electron IORT, as part of the multimodality treatment of this disease.
Head and neck cancer
Head and neck cancers are often difficult to treat and have a high rate of recurrence or
metastasis
Metastasis is a pathogenic agent's spread from an initial or primary site to a different or secondary site within the host's body; the term is typically used when referring to metastasis by a cancerous tumor. The newly pathological sites, then, ...
. IOERT is an effective means of treating locally advanced or recurrent head and neck cancers. Furthermore, research shows that a boost given by IOERT reduces the ability for surviving tumor cells to
replicate, creating extra time for healing of the surgical wound before EBRT is administered.
Pancreatic cancer
In the U.S., pancreatic cancer is the fourth leading cause of cancer death, even though there has been a slight improvement in mortality rates in recent years. Although the optimal treatment plan remains debated, a combination of radiotherapy and chemotherapy is favored in the U.S. As part of a multimodality treatment, IOERT appears to reduce local recurrence when combined with EBRT, chemoradiation, and surgical resection.
Soft tissue sarcomas
Soft tissue
sarcomas can be effectively treated by electron IORT, which appears to be gaining acceptance as the current practice for sarcomas in combination with EBRT (preferably preoperative) and maximal
resection. Used together, IOERT and EBRT appear to be improving local control, and this method is being refined so that it can effectively be used in combination with other interventions if indicated. In studies regarding the delivery of therapeutic radiation in the
limb-sparing approach to extremity soft tissue sarcomas, electron IORT has been called ‘precision radiotherapy’ by some, because the treating physician has direct visualization of the tumor or surgical cavity and can manually exclude normal tissue from the field.
History
Spanish and German doctors, in 1905 and 1915 respectively, used
intraoperative radiation therapy
Intraoperative radiation therapy (IORT) is radiation therapy that is administered during surgery directly in the operating room (hence ''intraoperative'').
Usually radiation therapy, therapeutic levels of radiation are delivered to the cancer, tu ...
(IORT) in an attempt to eradicate residual tumors left behind after surgical resection. However, radiation equipment in the early twentieth-century could only deliver low energy
X-rays
An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 Picometre, picometers to 10 Nanometre, nanometers, corresponding to frequency, ...
, which had relatively poor penetration; high doses of radiation could not be applied externally without doing unacceptable damage to normal tissues.
IORT
Intraoperative radiation therapy (IORT) is radiation therapy that is administered during surgery directly in the operating room (hence ''intraoperative'').
Usually therapeutic levels of radiation are delivered to the tumor bed while the area is ...
treatments with low energy or "orthovoltage" X-rays gained advocates throughout the 1930s and 1940s, but the results were inconsistent. The X-rays penetrated beyond the tumor bed to the normal tissues beneath, had poor dose distributions, and took a relatively long time to administer. The technique was largely abandoned in the late 1950s with the advent of
megavoltage
Megavoltage X-rays are produced by linear accelerators ("linacs") operating at voltages in excess of 1000 kV (1 MV) range, and therefore have an energy in the MeV range. The voltage in this case refers to the voltage used to accelerat ...
radiation equipment, which enabled the delivery of more penetrating external radiation.
In 1965, the modern era of IOERT began in Japan at
Kyoto University
, mottoeng = Freedom of academic culture
, established =
, type = National university, Public (National)
, endowment = ¥ 316 billion (2.4 1000000000 (number), billion USD)
, faculty = 3,480 (Teaching Staff)
, administrative_staff ...
where patients were treated with electrons generated by a
betatron Compared with other forms of IORT such as
orthovoltage X-ray beams, electron beams improved IOERT dose distributions, limited penetration beyond the tumor, and delivered the required dose much more rapidly. Normal tissue beneath the tumor bed could be protected and shielded, if required, and the treatment took only a few minutes to deliver. These advantages made electrons the preferred radiation for IOERT. The technique gained favor in Japan. Other Japanese hospitals initiated IOERT using electron beams, principally generated from linear
particle accelerators
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.
Large accelerators are used for fundamental research in particle ...
. At most institutions, patients were operated on in the operating room (OR) and were transported to the radiation facility for treatment.
With the Japanese IOERT technique, relatively large single doses of radiation were administered during surgery, and most patients received no follow-up external radiation treatment. Even though this reduced the overall dose that could potentially be delivered to the tumor site, the early Japanese results were impressive, particularly for
gastric cancer
Stomach cancer, also known as gastric cancer, is a cancer that develops from the lining of the stomach. Most cases of stomach cancers are gastric carcinomas, which can be divided into a number of subtypes, including gastric adenocarcinomas. Lymph ...
.
The Japanese experience was encouraging enough for several U.S. centers to institute IOERT programs. The first one began at
Howard University in 1976 and followed the Japanese protocol of a large, single dose. Howard built a standard radiation therapy facility with one room that could be used as an OR as well as for conventional treatment. Because the radiation equipment was also used for conventional therapy, the competition for the machine limited the number of patients that could be scheduled for IOERT.
In 1978,
Massachusetts General Hospital
Massachusetts General Hospital (Mass General or MGH) is the original and largest teaching hospital of Harvard Medical School located in the West End neighborhood of Boston, Massachusetts. It is the third oldest general hospital in the United Stat ...
(MGH) started an IORT program. The MGH doctors scheduled one of their conventional therapy rooms for IOERT one afternoon a week, performed surgery in the OR, and transported the patient to the radiation therapy room during surgery. This used the radiation equipment more efficiently and required no additional capital outlay. However, about 30-50% of the patients planned for IOERT were found to be unsuitable candidates for IORT at the time of surgery, mainly because the disease had spread to adjacent organs. This factor, combined with the risks and complexities of moving a patient during surgery, severely limited the number of patients who could be treated using the MGH method of IOERT. Consequently, conventional fractionated external beam irradiation was added to the IOERT dose, either prior to or subsequent to the surgery, in the MGH IOERT program.
The
National Cancer Institute
The National Cancer Institute (NCI) coordinates the United States National Cancer Program and is part of the National Institutes of Health (NIH), which is one of eleven agencies that are part of the U.S. Department of Health and Human Services. ...
(NCI) started an IOERT program in 1979. Their approach combined maximal surgical resection and IOERT and, in most cases, did not include conventional external beam therapy as part of the treatment. Because the NCI protocol relied on IOERT radiation alone, the IOERT fields were often very large, sometimes requiring two or three adjacent and overlapping fields to cover the tumor site. While the NCI results for these very large tumors were not encouraging, they showed that even the combination of aggressive surgery and large IOERT fields had acceptable
toxicity
Toxicity is the degree to which a chemical substance or a particular mixture of substances can damage an organism. Toxicity can refer to the effect on a whole organism, such as an animal, bacterium, or plant, as well as the effect on a subst ...
. Furthermore, they introduced several technical innovations to IOERT, including the use of television for simultaneous periscopic viewing of the tumor by the surgical team.
In 1981 the
Mayo Clinic
The Mayo Clinic () is a nonprofit American academic medical center focused on integrated health care, education, and research. It employs over 4,500 physicians and scientists, along with another 58,400 administrative and allied health staff, ...
tried yet another arrangement. They built an OR adjacent to the radiation therapy department. Potential IOERT patients underwent surgery in the regular OR suite. If they were found to be candidates for IOERT, a second surgical procedure was scheduled in the OR adjacent to the radiation facility. By scheduling only those patients known to be suitable for IOERT, they made more efficient use of their radiation therapy machine, but at the cost of subjecting patients to a second surgery. Subsequently, the Mayo Clinic remodeled an OR and installed a conventional radiation therapy machine with its required massive shield walls, and the clinic now routinely treats over 100 IORT patients per year. After 1985, Siemens Medical Systems offered a specialized LINAC for IOERT. It was designed to be used in the OR, but it weighed more than eight tons and required about 100 tons of shielding. This proved to be too expensive an approach for the medical community, and only seven of these specialized units were ever sold.
Dedicating an OR to IOERT increases the number of patients that can be treated and eliminates the risks of double surgeries and moving a patient during surgery. It also eliminates the complex logistics involved in moving patients from the OR to the therapy room and back to the OR. However, this solution has its own disadvantages: Remodeling an OR and purchasing an accelerator is expensive. Moreover, IORT is restricted to that one, specialized OR. Even so, the Mayo Clinic model demonstrated that when therapy equipment is located within an OR, the number of IOERT procedures will increase. In 1985, IOERT began in Italy and involved a specialized method to facilitate surgery followed by transport to the radiotherapy treatment room. Around the same time in France, another IOERT method was developed using the Lyon intra-operative device.
In 1982 the Joint Center for Radiation Therapy (JCRT), at
Harvard Medical School
Harvard Medical School (HMS) is the graduate medical school of Harvard University and is located in the Longwood Medical Area of Boston, Massachusetts. Founded in 1782, HMS is one of the oldest medical schools in the United States and is consi ...
, attempted to reduce the cost of performing IORT in an OR by using orthovoltage X-rays to provide the intraoperative dose, which was similar to the approach used in Germany in 1915. But this was less than ideal. While the shielding costs and the cost and weight of the equipment compared favorably with conventional electron accelerators, dose distributions were inferior; treatment times were longer; and bones received a higher radiation dose. For these reasons, the centers rejected IO orthovoltage (X-rays) radiation therapy machines. In addition, these orthovoltage machines (300 kvp) were not designed to be mobile.
Advent of Portable Linear Accelerators
In the 1990s, electron IORT experienced resurgence, due to the development of mobile linear accelerators that used electron beams—the
Mobetron, LIAC, and NOVAC-7 -- and the increasing use of IOERT to treat breast cancer.
[Gunderson LL, Willett CG, Calvo FA, Harrison LB, eds]
''Intraoperative Irradiation: Techniques and Results''.
Second edition. New York: NY; Humana Press, 2011:51. Prior to the invention of portable LINACs for IOERT, clinicians could only treat IORT patients in specially shielded operating rooms, which were expensive to build, or in a radiotherapy room, which required transporting the anesthetized patient from the OR to the LINAC for treatment. These factors were major obstructions to the widespread adoption of IORT because they added significant cost to treatment as well as logistical complications to surgery, including an increased risk of infection to the patient.
Because portable LINACs for IOERT produced electron beams of energy less than or equal to 12
MeV
In physics, an electronvolt (symbol eV, also written electron-volt and electron volt) is the measure of an amount of kinetic energy gained by a single electron accelerating from rest through an Voltage, electric potential difference of one volt i ...
and did not use bending magnets, the secondary radiation emitted was so low that it didn’t require permanent shielding in the operating room. This greatly reduced the cost of either constructing a new OR or retrofitting an old one.
By using mobile units, the possibility of treating patients with IORT was no longer restricted to the availability of special shielded operating rooms, but could be done in regular unshielded ORs.
Currently, the
Mobetron, LIAC, and NOVAC-7 linear accelerators are improving patient care by delivering intraoperative radiation electron beam therapy to cancer patients during surgery. All three units are compact and mobile. Invented in the U.S. in 1997, the
Mobetron uses
X-band technology and a
soft docking system. The LIAC and NOVAC-7 are robotic devices developed in Italy that use
S-band
The S band is a designation by the Institute of Electrical and Electronics Engineers (IEEE) for a part of the microwave band of the electromagnetic spectrum covering frequencies from 2 to 4 gigahertz (GHz). Thus it crosses the conventional ...
technology and a hard-docking system. The NOVAC-7 became available for clinical use in the 1990s while the LIAC was introduced to a clinical environment in 2003.
Other non-IOERT mobile units have been developed as well. In 1998, a technique called
TARGIT (targeted intraoperative radio therapy) was designed at the
University College London
, mottoeng = Let all come who by merit deserve the most reward
, established =
, type = Public research university
, endowment = £143 million (2020)
, budget = ...
for treating the tumor bed after wide local excision (
lumpectomy) of
breast cancer
Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin, milk rejection, fluid coming from the nipple, a newly inverted nipple, or a re ...
. TARGIT uses a miniature and mobile X-ray source that emits low energy X-ray radiation (max. 50 kV) in isotropic distribution. (IO)-
brachytherapy
Brachytherapy is a form of radiation therapy where a sealed radiation source is placed inside or next to the area requiring treatment. ''Brachy'' is Greek for short. Brachytherapy is commonly used as an effective treatment for cervical, prosta ...
with MammoSite is also used to treat breast cancer.
Interest in this treatment technique is growing, due in part to the development of LINAC for IOERT by factories.
[Skandarajah AR, Lynch AC, Mackay JR, Ngan S, Heriot AG (March 2009). "The role of intraoperative radiotherapy in solid tumors." Ann. Surg. Oncol. 16 (3): 735–44]
See also
*
External beam radiotherapy
External beam radiotherapy (EBRT) is the most common form of radiotherapy (radiation therapy). The patient sits or lies on a couch and an external source of ionizing radiation is pointed at a particular part of the body. In contrast to brachyt ...
(EBRT)
*
Intraoperative radiation therapy
Intraoperative radiation therapy (IORT) is radiation therapy that is administered during surgery directly in the operating room (hence ''intraoperative'').
Usually radiation therapy, therapeutic levels of radiation are delivered to the cancer, tu ...
(IORT)
*
Targeted intraoperative radiotherapy
Targeted intra-operative radiotherapy, also known as targeted IORT, is a technique of giving radiotherapy to the tissues surrounding a cancer after its surgical removal, a form of intraoperative radiation therapy. The technique was designed in ...
(TARGIT)
References
External links
Internal radiation therapy, cancer.org
{{Radiation oncology
Electron beams in medical applications
Radiation therapy procedures