HOME

TheInfoList



OR:

In mathematical logic, in particular in
model theory In mathematical logic, model theory is the study of the relationship between formal theories (a collection of sentences in a formal language expressing statements about a mathematical structure), and their models (those structures in which the s ...
and nonstandard analysis, an internal set is a set that is a member of a model. The concept of internal sets is a tool in formulating the transfer principle, which concerns the logical relation between the properties of the real numbers R, and the properties of a larger field denoted *R called the hyperreal numbers. The field *R includes, in particular,
infinitesimal In mathematics, an infinitesimal number is a quantity that is closer to zero than any standard real number, but that is not zero. The word ''infinitesimal'' comes from a 17th-century Modern Latin coinage ''infinitesimus'', which originally referr ...
("infinitely small") numbers, providing a rigorous mathematical justification for their use. Roughly speaking, the idea is to express analysis over R in a suitable language of mathematical logic, and then point out that this language applies equally well to *R. This turns out to be possible because at the set-theoretic level, the propositions in such a language are interpreted to apply only to internal sets rather than to all sets (note that the term "language" is used in a loose sense in the above).
Edward Nelson Edward Nelson (May 4, 1932 – September 10, 2014) was an American mathematician. He was professor in the Mathematics Department at Princeton University. He was known for his work on mathematical physics and mathematical logic. In mathematic ...
's internal set theory is an axiomatic approach to nonstandard analysis (see also Palmgren at constructive nonstandard analysis). Conventional infinitary accounts of nonstandard analysis also use the concept of internal sets.


Internal sets in the ultrapower construction

Relative to the ultrapower construction of the hyperreal numbers as equivalence classes of sequences \langle u_n\rangle of reals, an internal subset 'An''of *R is one defined by a sequence of real sets \langle A_n \rangle, where a hyperreal _n/math> is said to belong to the set _nsubseteq \; ^*\! if and only if the set of indices ''n'' such that u_n \in A_n, is a member of the ultrafilter used in the construction of *R. More generally, an internal entity is a member of the natural extension of a real entity. Thus, every element of *R is internal; a subset of *R is internal if and only if it is a member of the natural extension ^* \mathcal(\mathbb) of the power set \mathcal(\mathbb) of R; etc.


Internal subsets of the reals

Every internal subset of *R that is a subset of (the embedded copy of) R is necessarily ''finite'' (see Theorem 3.9.1 Goldblatt, 1998). In other words, every internal infinite subset of the hyperreals necessarily contains nonstandard elements.


See also

*
Standard part function In nonstandard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every suc ...
* Superstructure (mathematics)


References

* Goldblatt, Robert. ''Lectures on the
hyperreal Hyperreal may refer to: * Hyperreal numbers, an extension of the real numbers in mathematics that are used in non-standard analysis * Hyperreal.org, a rave culture website based in San Francisco, US * Hyperreality, a term used in semiotics and po ...
s''. An introduction to nonstandard analysis.
Graduate Texts in Mathematics Graduate Texts in Mathematics (GTM) ( ISSN 0072-5285) is a series of graduate-level textbooks in mathematics published by Springer-Verlag. The books in this series, like the other Springer-Verlag mathematics series, are yellow books of a standa ...
, 188. Springer-Verlag, New York, 1998. * {{Infinitesimals Nonstandard analysis