Intensive And Extensive Properties
   HOME

TheInfoList



OR:

Physical properties A physical property is any property that is measurable, whose value describes a state of a physical system. The changes in the physical properties of a system can be used to describe its changes between momentary states. Physical properties are o ...
of materials and
system A system is a group of Interaction, interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment (systems), environment, is described by its boundaries, ...
s can often be categorized as being either intensive or extensive, according to how the property changes when the size (or extent) of the system changes. According to IUPAC, an intensive quantity is one whose magnitude is independent of the size of the system, whereas an extensive quantity is one whose magnitude is additive for subsystems. The terms ''intensive and extensive quantities'' were introduced into physics by German writer Georg Helm in 1898, and by American physicist and chemist
Richard C. Tolman Richard Chace Tolman (March 4, 1881 – September 5, 1948) was an American mathematical physicist and physical chemist who made many contributions to statistical mechanics. He also made important contributions to theoretical cosmology in t ...
in 1917.
/ref> An intensive property does not depend on the system size or the amount of material in the system. It is not necessarily homogeneously distributed in space; it can vary from place to place in a body of matter and radiation. Examples of intensive properties include temperature, ''T''; refractive index, ''n''; density, ''ρ''; and hardness, ''η''. By contrast, extensive properties such as the mass, volume and entropy of systems are additive for subsystems. Not all properties of matter fall into these two categories. For example, the square root of the volume is neither intensive nor extensive. For example if a system is doubled in size by juxtaposing a second identical system, the value of an intensive property equals the value for each subsystem and the value of an extensive property is twice the value for each subsystem. However the property √V is instead multiplied by √2 .


Intensive properties

An intensive property is a
physical quantity A physical quantity is a physical property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a ''value'', which is the algebraic multiplication of a ' Numerical value ' and a ' Unit '. For examp ...
whose value does not depend on the amount of substance which was measured. The most obvious intensive quantities are ratios of extensive quantities. In a homogeneous system divided into two halves, all its extensive properties, in particular its volume and its mass, are divided into two halves. All its intensive properties, such as the mass per volume (mass density) or volume per mass ( specific volume), must remain the same in each half. The temperature of a system in thermal equilibrium is the same as the temperature of any part of it, so temperature is an intensive quantity. If the system is divided by a wall that is permeable to heat or to matter, the temperature of each subsystem is identical. Additionally, the boiling temperature of a substance is an intensive property. For example, the boiling temperature of water is 100 °C at a pressure of one
atmosphere An atmosphere () is a layer of gas or layers of gases that envelop a planet, and is held in place by the gravity of the planetary body. A planet retains an atmosphere when the gravity is great and the temperature of the atmosphere is low. A s ...
, regardless of the quantity of water remaining as liquid. Any extensive quantity "E" for a sample can be divided by the sample's volume, to become the "E density" for the sample; similarly, any extensive quantity "E" can be divided by the sample's mass, to become the sample's "specific E"; extensive quantities "E" which have been divided by the number of moles in their sample are referred to as "molar E". The distinction between intensive and extensive properties has some theoretical uses. For example, in thermodynamics, the state of a simple compressible system is completely specified by two independent, intensive properties, along with one extensive property, such as mass. Other intensive properties are derived from those two intensive variables.


Examples

Examples of intensive properties include: * charge density, ''ρ'' (or ''ne'') * chemical potential, ''μ'' * color * concentration, ''c'' * energy density, ''ρ'' *
magnetic permeability In electromagnetism, permeability is the measure of magnetization that a material obtains in response to an applied magnetic field. Permeability is typically represented by the (italicized) Greek letter ''μ''. The term was coined by William ...
, ''μ'' * mass density, ''ρ'' (or specific gravity) * melting point and
boiling point The boiling point of a substance is the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid and the liquid changes into a vapor. The boiling point of a liquid varies depending upon the surrounding envir ...
* molality, ''m'' or ''b'' * pressure, ''p'' * refractive index * specific conductance (or electrical conductivity) * specific heat capacity, ''cp'' *
specific internal energy The internal energy of a thermodynamic system is the total energy contained within it. It is the energy necessary to create or prepare the system in its given internal state, and includes the contributions of potential energy and internal kinet ...
, ''u'' *
specific rotation In chemistry, specific rotation ( '') is a property of a chiral chemical compound. It is defined as the change in orientation of monochromatic plane-polarized light, per unit distance–concentration product, as the light passes through a sampl ...
, 'α''* specific volume, ''v'' *
standard reduction potential Redox potential (also known as oxidation / reduction potential, ''ORP'', ''pe'', ''E_'', or E_) is a measure of the tendency of a chemical species to acquire electrons from or lose electrons to an electrode and thereby be reduced or oxidised respe ...
, ''E°'' *
surface tension Surface tension is the tendency of liquid surfaces at rest to shrink into the minimum surface area possible. Surface tension is what allows objects with a higher density than water such as razor blades and insects (e.g. water striders) to f ...
* temperature, ''T'' * thermal conductivity * velocity ''v'' * viscosity See List of materials properties for a more exhaustive list specifically pertaining to materials.


Extensive properties

An extensive property is a physical quantity whose value is proportional to the size of the
system A system is a group of Interaction, interacting or interrelated elements that act according to a set of rules to form a unified whole. A system, surrounded and influenced by its environment (systems), environment, is described by its boundaries, ...
it describes, or to the quantity of matter in the system. For example, the mass of a sample is an extensive quantity; it depends on the amount of substance. The related intensive quantity is the density which is independent of the amount. The density of water is approximately 1g/mL whether you consider a drop of water or a swimming pool, but the mass is different in the two cases. Dividing one extensive property by another extensive property generally gives an intensive value—for example: mass (extensive) divided by volume (extensive) gives density (intensive).


Examples

Examples of extensive properties include: *
amount of substance In chemistry, the amount of substance ''n'' in a given sample of matter is defined as the quantity or number of discrete atomic-scale particles in it divided by the Avogadro constant ''N''A. The particles or entities may be molecules, atoms, ions, ...
, ''n'' * enthalpy, ''H'' * entropy, ''S'' * Gibbs energy, ''G'' * heat capacity, ''Cp'' *
Helmholtz energy In thermodynamics, the Helmholtz free energy (or Helmholtz energy) is a thermodynamic potential that measures the useful work obtainable from a closed thermodynamic system at a constant temperature (isothermal). The change in the Helmholtz ener ...
, ''A'' or ''F'' *
internal energy The internal energy of a thermodynamic system is the total energy contained within it. It is the energy necessary to create or prepare the system in its given internal state, and includes the contributions of potential energy and internal kinet ...
, ''U'' * spring stiffness, ''K'' * mass, ''m'' * volume, ''V''


Conjugate quantities

In thermodynamics, some extensive quantities measure amounts that are conserved in a thermodynamic process of transfer. They are transferred across a wall between two thermodynamic systems or subsystems. For example, species of matter may be transferred through a semipermeable membrane. Likewise, volume may be thought of as transferred in a process in which there is a motion of the wall between two systems, increasing the volume of one and decreasing that of the other by equal amounts. On the other hand, some extensive quantities measure amounts that are not conserved in a thermodynamic process of transfer between a system and its surroundings. In a thermodynamic process in which a quantity of energy is transferred from the surroundings into or out of a system as heat, a corresponding quantity of entropy in the system respectively increases or decreases, but, in general, not in the same amount as in the surroundings. Likewise, a change in the amount of electric polarization in a system is not necessarily matched by a corresponding change in electric polarization in the surroundings. In a thermodynamic system, transfers of extensive quantities are associated with changes in respective specific intensive quantities. For example, a volume transfer is associated with a change in pressure. An entropy change is associated with a temperature change. A change in the amount of electric polarization is associated with an electric field change. The transferred extensive quantities and their associated respective intensive quantities have dimensions that multiply to give the dimensions of energy. The two members of such respective specific pairs are mutually conjugate. Either one, but not both, of a conjugate pair may be set up as an independent state variable of a thermodynamic system. Conjugate setups are associated by Legendre transformations.


Composite properties

The ratio of two extensive properties of the same object or system is an intensive property. For example, the ratio of an object's mass and volume, which are two extensive properties, is density, which is an intensive property. More generally properties can be combined to give new properties, which may be called derived or composite properties. For example, the base quantities mass and volume can be combined to give the derived quantity density. These composite properties can sometimes also be classified as intensive or extensive. Suppose a composite property F is a function of a set of intensive properties \ and a set of extensive properties \, which can be shown as F(\,\). If the size of the system is changed by some scaling factor, \lambda, only the extensive properties will change, since intensive properties are independent of the size of the system. The scaled system, then, can be represented as F(\,\). Intensive properties are independent of the size of the system, so the property F is an intensive property if for all values of the scaling factor, \lambda, :F(\,\) = F(\,\).\, (This is equivalent to saying that intensive composite properties are
homogeneous function In mathematics, a homogeneous function is a function of several variables such that, if all its arguments are multiplied by a scalar, then its value is multiplied by some power of this scalar, called the degree of homogeneity, or simply the ''deg ...
s of degree 0 with respect to \.) It follows, for example, that the ratio of two extensive properties is an intensive property. To illustrate, consider a system having a certain mass, m, and volume, V. The density, \rho is equal to mass (extensive) divided by volume (extensive): \rho=\frac. If the system is scaled by the factor \lambda, then the mass and volume become \lambda m and \lambda V, and the density becomes \rho=\frac; the two \lambdas cancel, so this could be written mathematically as \rho (\lambda m, \lambda V) = \rho (m, V), which is analogous to the equation for F above. The property F is an extensive property if for all \lambda, :F(\,\)=\lambda F(\,\).\, (This is equivalent to saying that extensive composite properties are
homogeneous function In mathematics, a homogeneous function is a function of several variables such that, if all its arguments are multiplied by a scalar, then its value is multiplied by some power of this scalar, called the degree of homogeneity, or simply the ''deg ...
s of degree 1 with respect to \.) It follows from Euler's homogeneous function theorem that :F(\,\)=\sum_j A_j \left(\frac\right), where the
partial derivative In mathematics, a partial derivative of a function of several variables is its derivative with respect to one of those variables, with the others held constant (as opposed to the total derivative, in which all variables are allowed to vary). Part ...
is taken with all parameters constant except A_j. This last equation can be used to derive thermodynamic relations.


Specific properties

A ''specific'' property is the intensive property obtained by dividing an extensive property of a system by its mass. For example, heat capacity is an extensive property of a system. Dividing heat capacity, C_p, by the mass of the system gives the specific heat capacity, c_p, which is an intensive property. When the extensive property is represented by an upper-case letter, the symbol for the corresponding intensive property is usually represented by a lower-case letter. Common examples are given in the table below. : *Specific volume is the reciprocal of density. If the amount of substance in moles can be determined, then each of these thermodynamic properties may be expressed on a molar basis, and their name may be qualified with the adjective '' molar'', yielding terms such as molar volume, molar internal energy, molar enthalpy, and molar entropy. The symbol for molar quantities may be indicated by adding a subscript "m" to the corresponding extensive property. For example, molar enthalpy is H_. Molar Gibbs free energy is commonly referred to as chemical potential, symbolized by \mu, particularly when discussing a partial molar Gibbs free energy \mu_i for a component i in a mixture. For the characterization of substances or reactions, tables usually report the molar properties referred to a
standard state In chemistry, the standard state of a material (pure substance, mixture or solution) is a reference point used to calculate its properties under different conditions. A superscript circle ° (degree symbol) or a Plimsoll (⦵) character is use ...
. In that case an additional superscript ^ is added to the symbol. Examples: * V_^ = is the molar volume of an ideal gas at
standard conditions for temperature and pressure Standard temperature and pressure (STP) are standard sets of conditions for experimental measurements to be established to allow comparisons to be made between different sets of data. The most used standards are those of the International Union o ...
. * C_^ is the standard molar heat capacity of a substance at constant pressure. * \mathrm \Delta_ H_^ is the standard enthalpy variation of a reaction (with subcases: formation enthalpy, combustion enthalpy...). * E^ is the
standard reduction potential Redox potential (also known as oxidation / reduction potential, ''ORP'', ''pe'', ''E_'', or E_) is a measure of the tendency of a chemical species to acquire electrons from or lose electrons to an electrode and thereby be reduced or oxidised respe ...
of a redox couple, i.e. Gibbs energy over charge, which is measured in volt = J/C.


Limitations

The general validity of the division of physical properties into extensive and intensive kinds has been addressed in the course of science.
Redlich Redlich is a surname of Jewish-Austrian origin. Notable people with the surname include: * Ed Redlich, American television producer * Emil Redlich (1866–1930), Austrian neurologist * Forrest Redlich, Australian independent screenwriter/producer ...
noted that, although physical properties and especially thermodynamic properties are most conveniently defined as either intensive or extensive, these two categories are not all-inclusive and some well-defined concepts like the square-root of a volume conform to neither definition. Other systems, for which standard definitions do not provide a simple answer, are systems in which the subsystems interact when combined. Redlich pointed out that the assignment of some properties as intensive or extensive may depend on the way subsystems are arranged. For example, if two identical galvanic cells are connected in
parallel Parallel is a geometric term of location which may refer to: Computing * Parallel algorithm * Parallel computing * Parallel metaheuristic * Parallel (software), a UNIX utility for running programs in parallel * Parallel Sysplex, a cluster of IBM ...
, the voltage of the system is equal to the voltage of each cell, while the electric charge transferred (or the
electric current An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. The moving pa ...
) is extensive. However, if the same cells are connected in series, the charge becomes intensive and the voltage extensive. The IUPAC definitions do not consider such cases. Some intensive properties do not apply at very small sizes. For example, viscosity is a macroscopic quantity and is not relevant for extremely small systems. Likewise, at a very small scale color is not independent of size, as shown by quantum dots, whose color depends on the size of the "dot".


References

{{DEFAULTSORT:Intensive And Extensive Properties Physical quantities Thermodynamic properties