HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, an integral transform is a type of transform that maps a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
from its original
function space In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a ve ...
into another function space via integration, where some of the properties of the original function might be more easily characterized and manipulated than in the original function space. The transformed function can generally be mapped back to the original function space using the ''inverse transform''.


General form

An integral transform is any transform ''T'' of the following form: :(Tf)(u) = \int_^ f(t)\, K(t, u)\, dt The input of this transform is a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-orie ...
''f'', and the output is another function ''Tf''. An integral transform is a particular kind of mathematical operator. There are numerous useful integral transforms. Each is specified by a choice of the function K of two variables, that is called the kernel or nucleus of the transform. Some kernels have an associated ''inverse kernel'' K^( u,t ) which (roughly speaking) yields an inverse transform: :f(t) = \int_^ (Tf)(u)\, K^( u,t )\, du A ''symmetric kernel'' is one that is unchanged when the two variables are permuted; it is a kernel function ''K'' such that K(t, u) = K(u, t). In the theory of integral equations, symmetric kernels correspond to
self-adjoint operators In mathematics, a self-adjoint operator on a complex vector space ''V'' with inner product \langle\cdot,\cdot\rangle is a linear map ''A'' (from ''V'' to itself) that is its own adjoint. That is, \langle Ax,y \rangle = \langle x,Ay \rangle for al ...
.


Motivation

There are many classes of problems that are difficult to solve—or at least quite unwieldy algebraically—in their original representations. An integral transform "maps" an equation from its original "domain" into another domain, in which manipulating and solving the equation may be much easier than in the original domain. The solution can then be mapped back to the original domain with the inverse of the integral transform. There are many applications of probability that rely on integral transforms, such as "pricing kernel" or
stochastic discount factor The concept of the stochastic discount factor (SDF) is used in financial economics and mathematical finance. The name derives from the price of an asset being computable by "discounting" the future cash flow \tilde_i by the stochastic factor \tilde ...
, or the smoothing of data recovered from robust statistics; see
kernel (statistics) The term kernel is used in statistics, statistical analysis to refer to a window function. The term "kernel" has several distinct meanings in different branches of statistics. Bayesian statistics In statistics, especially in Bayesian statistics ...
.


History

The precursor of the transforms were the
Fourier series A Fourier series () is an Series expansion, expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. By expressing a function as a sum of sines and cosines, many problems ...
to express functions in finite intervals. Later the
Fourier transform In mathematics, the Fourier transform (FT) is an integral transform that takes a function as input then outputs another function that describes the extent to which various frequencies are present in the original function. The output of the tr ...
was developed to remove the requirement of finite intervals. Using the Fourier series, just about any practical function of time (the
voltage Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
across the terminals of an
electronic device Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles. It is a subfield of physics and ...
for example) can be represented as a sum of
sine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite th ...
s and
cosine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that ...
s, each suitably scaled (multiplied by a constant factor), shifted (advanced or retarded in time) and "squeezed" or "stretched" (increasing or decreasing the frequency). The sines and cosines in the Fourier series are an example of an
orthonormal basis In mathematics, particularly linear algebra, an orthonormal basis for an inner product space V with finite Dimension (linear algebra), dimension is a Basis (linear algebra), basis for V whose vectors are orthonormal, that is, they are all unit vec ...
.


Usage example

As an example of an application of integral transforms, consider the
Laplace transform In mathematics, the Laplace transform, named after Pierre-Simon Laplace (), is an integral transform that converts a Function (mathematics), function of a Real number, real Variable (mathematics), variable (usually t, in the ''time domain'') to a f ...
. This is a technique that maps differential or
integro-differential equation In mathematics, an integro-differential equation is an equation that involves both integrals and derivatives of a function (mathematics), function. General first order linear equations The general first-order, linear (only with respect to the t ...
s in the "time" domain into polynomial equations in what is termed the "complex frequency" domain. (Complex frequency is similar to actual, physical frequency but rather more general. Specifically, the imaginary component ''ω'' of the complex frequency ''s'' = −''σ'' + ''iω'' corresponds to the usual concept of frequency, ''viz.'', the rate at which a sinusoid cycles, whereas the real component ''σ'' of the complex frequency corresponds to the degree of "damping", i.e. an exponential decrease of the amplitude.) The equation cast in terms of complex frequency is readily solved in the complex frequency domain (roots of the polynomial equations in the complex frequency domain correspond to
eigenvalues In linear algebra, an eigenvector ( ) or characteristic vector is a vector that has its direction unchanged (or reversed) by a given linear transformation. More precisely, an eigenvector \mathbf v of a linear transformation T is scaled by a ...
in the time domain), leading to a "solution" formulated in the frequency domain. Employing the inverse transform, ''i.e.'', the inverse procedure of the original Laplace transform, one obtains a time-domain solution. In this example, polynomials in the complex frequency domain (typically occurring in the denominator) correspond to
power series In mathematics, a power series (in one variable) is an infinite series of the form \sum_^\infty a_n \left(x - c\right)^n = a_0 + a_1 (x - c) + a_2 (x - c)^2 + \dots where ''a_n'' represents the coefficient of the ''n''th term and ''c'' is a co ...
in the time domain, while axial shifts in the complex frequency domain correspond to damping by decaying exponentials in the time domain. The Laplace transform finds wide application in physics and particularly in electrical engineering, where the characteristic equations that describe the behavior of an electric circuit in the complex frequency domain correspond to linear combinations of exponentially scaled and time-shifted damped sinusoids in the time domain. Other integral transforms find special applicability within other scientific and mathematical disciplines. Another usage example is the kernel in the path integral: :\psi(x,t) = \int_^\infty \psi(x',t') K(x,t; x', t') dx'. This states that the total amplitude \psi(x,t) to arrive at (x,t) is the sum (the integral) over all possible values x' of the total amplitude \psi(x',t') to arrive at the point (x',t') multiplied by the amplitude to go from x' to x i.e. K(x,t;x',t'). It is often referred to as the
propagator In quantum mechanics and quantum field theory, the propagator is a function that specifies the probability amplitude for a particle to travel from one place to another in a given period of time, or to travel with a certain energy and momentum. I ...
for a given system. This (physics) kernel is the kernel of the integral transform. However, for each quantum system, there is a different kernel.Mathematically, what is the kernel in path integral?
/ref>


Table of transforms

In the limits of integration for the inverse transform, ''c'' is a constant which depends on the nature of the transform function. For example, for the one and two-sided Laplace transform, ''c'' must be greater than the largest real part of the zeroes of the transform function. Note that there are alternative notations and conventions for the Fourier transform.


Different domains

Here integral transforms are defined for functions on the real numbers, but they can be defined more generally for functions on a group. * If instead one uses functions on the circle (periodic functions), integration kernels are then biperiodic functions; convolution by functions on the circle yields
circular convolution Circular convolution, also known as cyclic convolution, is a special case of periodic convolution, which is the convolution of two periodic functions that have the same period. Periodic convolution arises, for example, in the context of the discr ...
. * If one uses functions on the
cyclic group In abstract algebra, a cyclic group or monogenous group is a Group (mathematics), group, denoted C_n (also frequently \Z_n or Z_n, not to be confused with the commutative ring of P-adic number, -adic numbers), that is Generating set of a group, ge ...
of order ''n'' ( or ), one obtains ''n'' × ''n'' matrices as integration kernels; convolution corresponds to circulant matrices.


General theory

Although the properties of integral transforms vary widely, they have some properties in common. For example, every integral transform is a
linear operator In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pr ...
, since the integral is a linear operator, and in fact if the kernel is allowed to be a
generalized function In mathematics, generalized functions are objects extending the notion of functions on real or complex numbers. There is more than one recognized theory, for example the theory of distributions. Generalized functions are especially useful for tr ...
then all linear operators are integral transforms (a properly formulated version of this statement is the Schwartz kernel theorem). The general theory of such
integral equation In mathematical analysis, integral equations are equations in which an unknown function appears under an integral sign. In mathematical notation, integral equations may thus be expressed as being of the form: f(x_1,x_2,x_3,\ldots,x_n ; u(x_1,x_2 ...
s is known as Fredholm theory. In this theory, the kernel is understood to be a
compact operator In functional analysis, a branch of mathematics, a compact operator is a linear operator T: X \to Y, where X,Y are normed vector spaces, with the property that T maps bounded subsets of X to relatively compact subsets of Y (subsets with compact ...
acting on a
Banach space In mathematics, more specifically in functional analysis, a Banach space (, ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vectors and ...
of functions. Depending on the situation, the kernel is then variously referred to as the
Fredholm operator In mathematics, Fredholm operators are certain operators that arise in the Fredholm theory of integral equations. They are named in honour of Erik Ivar Fredholm. By definition, a Fredholm operator is a bounded linear operator ''T'' :  ...
, the
nuclear operator In mathematics, nuclear operators are an important class of linear operators introduced by Alexander Grothendieck in his doctoral dissertation. Nuclear operators are intimately tied to the projective tensor product of two topological vector space ...
or the Fredholm kernel.


See also

* Bateman transform *
Convolution kernel In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions f and g that produces a third function f*g, as the integral of the product of the two functions after one is reflected about the y-ax ...
*
Circular convolution Circular convolution, also known as cyclic convolution, is a special case of periodic convolution, which is the convolution of two periodic functions that have the same period. Periodic convolution arises, for example, in the context of the discr ...
*
Circulant matrix In linear algebra, a circulant matrix is a square matrix in which all rows are composed of the same elements and each row is rotated one element to the right relative to the preceding row. It is a particular kind of Toeplitz matrix. In numerica ...
* Differential equations * Kernel method *
List of transforms This is a list of transforms in mathematics. Integral transforms *Abel transform * Aboodh transform * Bateman transform *Fourier transform ** Short-time Fourier transform **Gabor transform * Hankel transform * Hartley transform * Hermite transf ...
* List of operators *
List of Fourier-related transforms This is a list of linear transformations of function (mathematics), functions related to Fourier analysis. Such transformations Map (mathematics), map a function to a set of coefficients of basis functions, where the basis functions are trigonomet ...
*
Nachbin's theorem In mathematics, in the area of complex analysis, Nachbin's theorem (named after Leopoldo Nachbin) is a result used to establish bounds on the growth rates for analytic functions. In particular, Nachbin's theorem may be used to give the domain o ...
* Nonlocal operator * Reproducing kernel *
Symbolic integration In calculus, symbolic integration is the problem of finding a formula for the antiderivative, or ''indefinite integral'', of a given function ''f''(''x''), i.e. to find a formula for a differentiable function ''F''(''x'') such that :\frac = f(x ...


References


Further reading

* A. D. Polyanin and A. V. Manzhirov, ''Handbook of Integral Equations'', CRC Press, Boca Raton, 1998. * R. K. M. Thambynayagam, ''The Diffusion Handbook: Applied Solutions for Engineers'', McGraw-Hill, New York, 2011. *
Tables of Integral Transforms
at EqWorld: The World of Mathematical Equations. {{Authority control