In
mathematical analysis, the uniform norm (or ) assigns to
real- or
complex-valued
bounded function
In mathematics, a function ''f'' defined on some set ''X'' with real or complex values is called bounded if the set of its values is bounded. In other words, there exists a real number ''M'' such that
:, f(x), \le M
for all ''x'' in ''X''. A fun ...
s defined on a
set the non-negative number
:
This
norm is also called the , the , the , or, when the
supremum
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest l ...
is in fact the maximum, the . The name "uniform norm" derives from the fact that a sequence of functions converges to under the
metric derived from the uniform norm
if and only if converges to
uniformly
Uniform distribution may refer to:
* Continuous uniform distribution
* Discrete uniform distribution
* Uniform distribution (ecology)
* Equidistributed sequence In mathematics, a sequence (''s''1, ''s''2, ''s''3, ...) of real numbers is said to be ...
.
If is a
continuous function
In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
on a
closed and bounded interval
Closed may refer to:
Mathematics
* Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set
* Closed set, a set which contains all its limit points
* Closed interval, ...
, or more generally a
compact set, then it is bounded and the
supremum
In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest l ...
in the above definition is attained by the Weierstrass
extreme value theorem, so we can replace the supremum by the maximum. In this case, the norm is also called the .
In particular, if is some vector such that
in
finite dimensional
coordinate space, it takes the form:
:
Metric and topology
The metric generated by this norm is called the , after
Pafnuty Chebyshev, who was first to systematically study it.
If we allow unbounded functions, this formula does not yield a norm or metric in a strict sense, although the obtained so-called
extended metric still allows one to define a topology on the function space in question.
The binary function
is then a metric on the space of all bounded functions (and, obviously, any of its subsets) on a particular domain. A sequence
converges uniformly
In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions (f_n) converges uniformly to a limiting function f on a set E if, given any arbitra ...
to a function
if and only if
We can define closed sets and closures of sets with respect to this metric topology; closed sets in the uniform norm are sometimes called ''uniformly closed'' and closures ''uniform closures''. The uniform closure of a set of functions A is the space of all functions that can be approximated by a sequence of uniformly-converging functions on
For instance, one restatement of the
Stone–Weierstrass theorem
In mathematical analysis, the Weierstrass approximation theorem states that every continuous function defined on a closed interval can be uniformly approximated as closely as desired by a polynomial function. Because polynomials are among the si ...
is that the set of all continuous functions on