HOME

TheInfoList



OR:

Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an
electrical conductor In physics and electrical engineering, a conductor is an object or type of material that allows the flow of charge (electric current) in one or more directions. Materials made of metal are common electrical conductors. Electric current is gener ...
in a changing
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
.
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
is generally credited with the discovery of induction in 1831, and
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
mathematically described it as
Faraday's law of induction Faraday's law of induction (briefly, Faraday's law) is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf)—a phenomenon known as electromagnetic inducti ...
.
Lenz's law Lenz's law states that the direction of the electric current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes changes in the initial magnetic field. It is named after p ...
describes the direction of the induced field. Faraday's law was later generalized to become the Maxwell–Faraday equation, one of the four
Maxwell equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. T ...
in his theory of
electromagnetism In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
. Electromagnetic induction has found many applications, including electrical components such as
inductor An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
s and
transformer A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer' ...
s, and devices such as
electric motor An electric motor is an Electric machine, electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a Electromagneti ...
s and
generator Generator may refer to: * Signal generator, electronic devices that generate repeating or non-repeating electronic signals * Electric generator, a device that converts mechanical energy to electrical energy. * Generator (circuit theory), an eleme ...
s.


History

Electromagnetic induction was discovered by
Michael Faraday Michael Faraday (; 22 September 1791 – 25 August 1867) was an English scientist who contributed to the study of electromagnetism and electrochemistry. His main discoveries include the principles underlying electromagnetic inducti ...
, published in 1831. It was discovered independently by
Joseph Henry Joseph Henry (December 17, 1797– May 13, 1878) was an American scientist who served as the first Secretary of the Smithsonian Institution. He was the secretary for the National Institute for the Promotion of Science, a precursor of the Smith ...
in 1832. In Faraday's first experimental demonstration (August 29, 1831), he wrapped two wires around opposite sides of an iron ring or "
torus In geometry, a torus (plural tori, colloquially donut or doughnut) is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle. If the axis of revolution does not tou ...
" (an arrangement similar to a modern
toroidal transformer Toroidal inductors and transformers are inductors and transformers which use magnetic cores with a toroidal (ring or donut) shape. They are passive electronic components, consisting of a circular ring or donut shaped magnetic core of ferromag ...
). Based on his understanding of electromagnets, he expected that, when current started to flow in one wire, a sort of wave would travel through the ring and cause some electrical effect on the opposite side. He plugged one wire into a
galvanometer A galvanometer is an electromechanical measuring instrument for electric current. Early galvanometers were uncalibrated, but improved versions, called ammeters, were calibrated and could measure the flow of current more precisely. A galvanom ...
, and watched it as he connected the other wire to a battery. He saw a transient current, which he called a "wave of electricity", when he connected the wire to the battery and another when he disconnected it. This induction was due to the change in
magnetic flux In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the weber ( ...
that occurred when the battery was connected and disconnected. Within two months, Faraday found several other manifestations of electromagnetic induction. For example, he saw transient currents when he quickly slid a bar magnet in and out of a coil of wires, and he generated a steady ( DC) current by rotating a copper disk near the bar magnet with a sliding electrical lead ("
Faraday's disk A homopolar generator is a DC electrical generator comprising an electrically conductive disc or cylinder rotating in a plane perpendicular to a uniform static magnetic field. A potential difference is created between the center of the disc and th ...
"). Faraday explained electromagnetic induction using a concept he called
lines of force A line of force in Faraday's extended sense is synonymous with Maxwell's line of induction. According to J.J. Thomson, Faraday usually discusses ''lines of force'' as chains of polarized particles in a dielectric, yet sometimes Faraday discusses t ...
. However, scientists at the time widely rejected his theoretical ideas, mainly because they were not formulated mathematically.''Michael Faraday'', by L. Pearce Williams, p. 510 An exception was
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
, who used Faraday's ideas as the basis of his quantitative electromagnetic theory."Archives Biographies: Michael Faraday", The Institution of Engineering and Technology.
/ref> In Maxwell's model, the time varying aspect of electromagnetic induction is expressed as a differential equation, which
Oliver Heaviside Oliver Heaviside FRS (; 18 May 1850 – 3 February 1925) was an English self-taught mathematician and physicist who invented a new technique for solving differential equations (equivalent to the Laplace transform), independently developed vec ...
referred to as Faraday's law even though it is slightly different from Faraday's original formulation and does not describe motional emf. Heaviside's version (see Maxwell–Faraday equation below) is the form recognized today in the group of equations known as
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. ...
. In 1834
Heinrich Lenz Heinrich Friedrich Emil Lenz (; ; also Emil Khristianovich Lenz, russian: Эмилий Христианович Ленц; 12 February 1804 – 10 February 1865), usually cited as Emil Lenz or Heinrich Lenz in some countries, was a Russian physici ...
formulated the law named after him to describe the "flux through the circuit".
Lenz's law Lenz's law states that the direction of the electric current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes changes in the initial magnetic field. It is named after p ...
gives the direction of the induced emf and current resulting from electromagnetic induction.


Theory


Faraday's law of induction and Lenz's law

Faraday's law of induction makes use of the
magnetic flux In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the weber ( ...
ΦB through a region of space enclosed by a wire loop. The magnetic flux is defined by a
surface integral In mathematics, particularly multivariable calculus, a surface integral is a generalization of multiple integrals to integration over surfaces. It can be thought of as the double integral analogue of the line integral. Given a surface, one may ...
: \Phi_\mathrm = \int_ \mathbf \cdot d \mathbf\, , where ''d''A is an element of the surface Σ enclosed by the wire loop, B is the magnetic field. The
dot product In mathematics, the dot product or scalar productThe term ''scalar product'' means literally "product with a scalar as a result". It is also used sometimes for other symmetric bilinear forms, for example in a pseudo-Euclidean space. is an algebra ...
B·''d''A corresponds to an infinitesimal amount of magnetic flux. In more visual terms, the magnetic flux through the wire loop is proportional to the number of
magnetic field lines A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
that pass through the loop. When the flux through the surface changes,
Faraday's law of induction Faraday's law of induction (briefly, Faraday's law) is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf)—a phenomenon known as electromagnetic inducti ...
says that the wire loop acquires an
electromotive force In electromagnetism and electronics, electromotive force (also electromotance, abbreviated emf, denoted \mathcal or ) is an energy transfer to an electric circuit per unit of electric charge, measured in volts. Devices called electrical ''transd ...
(emf). The most widespread version of this law states that the induced electromotive force in any closed circuit is equal to the rate of change of the
magnetic flux In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the weber ( ...
enclosed by the circuit: \mathcal = -\frac \, , where \mathcal is the emf and ΦB is the
magnetic flux In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted or . The SI unit of magnetic flux is the weber ( ...
. The direction of the electromotive force is given by
Lenz's law Lenz's law states that the direction of the electric current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes changes in the initial magnetic field. It is named after p ...
which states that an induced current will flow in the direction that will oppose the change which produced it. This is due to the negative sign in the previous equation. To increase the generated emf, a common approach is to exploit
flux linkage In circuit theory, flux linkage is a property of a two-terminal element. It is an extension rather than an equivalent of magnetic flux and is defined as a time integral :\lambda = \int \mathcal \,dt, where \mathcal is the voltage across the dev ...
by creating a tightly wound coil of wire, composed of ''N'' identical turns, each with the same magnetic flux going through them. The resulting emf is then ''N'' times that of one single wire. \mathcal = -N \frac Generating an emf through a variation of the magnetic flux through the surface of a wire loop can be achieved in several ways: # the magnetic field B changes (e.g. an alternating magnetic field, or moving a wire loop towards a bar magnet where the B field is stronger), # the wire loop is deformed and the surface Σ changes, # the orientation of the surface ''d''A changes (e.g. spinning a wire loop into a fixed magnetic field), # any combination of the above


Maxwell–Faraday equation

In general, the relation between the emf \mathcal in a wire loop encircling a surface Σ, and the electric field E in the wire is given by \mathcal = \oint_ \mathbf \cdot d\boldsymbol where ''d''ℓ is an element of contour of the surface Σ, combining this with the definition of flux \Phi_\mathrm = \int_ \mathbf \cdot d \mathbf\, , we can write the integral form of the Maxwell–Faraday equation \oint_ \mathbf \cdot d\boldsymbol = -\frac It is one of the four
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. ...
, and therefore plays a fundamental role in the theory of
classical electromagnetism Classical electromagnetism or classical electrodynamics is a branch of theoretical physics that studies the interactions between electric charges and currents using an extension of the classical Newtonian model; It is, therefore, a classical fie ...
.


Faraday's law and relativity

Faraday's law describes two different phenomena: the ''motional emf'' generated by a magnetic force on a moving wire (see
Lorentz force In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge moving with a velocity in an elect ...
), and the ''transformer emf'' this is generated by an electric force due to a changing magnetic field (due to the differential form of the
Maxwell–Faraday equation Faraday's law of induction (briefly, Faraday's law) is a basic law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf)—a phenomenon known as electromagnetic inducti ...
).
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
drew attention to the separate physical phenomena in 1861. Note that the law relating flux to EMF, which this article calls "Faraday's law", is referred to by Griffiths as the "universal flux rule". He uses the term "Faraday's law" to refer to what this article calls the "Maxwell–Faraday equation". This is believed to be a unique example in physics of where such a fundamental law is invoked to explain two such different phenomena."The flux rule" is the terminology that Feynman uses to refer to the law relating magnetic flux to EMF.
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
noticed that the two situations both corresponded to a relative movement between a conductor and a magnet, and the outcome was unaffected by which one was moving. This was one of the principal paths that led him to develop
special relativity In physics, the special theory of relativity, or special relativity for short, is a scientific theory regarding the relationship between space and time. In Albert Einstein's original treatment, the theory is based on two postulates: # The laws o ...
.
:Translated in


Applications

The principles of electromagnetic induction are applied in many devices and systems, including:


Electrical generator

The emf generated by Faraday's law of induction due to relative movement of a circuit and a magnetic field is the phenomenon underlying
electrical generator In electricity generation, a generator is a device that converts motive power (mechanical energy) or fuel-based power (chemical energy) into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas ...
s. When a
permanent magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, ...
is moved relative to a conductor, or vice versa, an electromotive force is created. If the wire is connected through an
electrical load An electrical load is an electrical component or portion of a circuit that consumes (active) electric power, such as electrical appliances and lights inside the home. The term may also refer to the power consumed by a circuit. This is opposed t ...
, current will flow, and thus
electrical energy Electrical energy is energy related to forces on electrically charged particles and the movement of electrically charged particles (often electrons in wires, but not always). This energy is supplied by the combination of electric current and electr ...
is generated, converting the mechanical energy of motion to electrical energy. For example, the ''drum generator'' is based upon the figure to the bottom-right. A different implementation of this idea is the
Faraday's disc A homopolar generator is a DC electrical generator comprising an electrically conductive disc or cylinder rotating in a plane perpendicular to a uniform static magnetic field. A potential difference is created between the center of the disc and th ...
, shown in simplified form on the right. In the Faraday's disc example, the disc is rotated in a uniform magnetic field perpendicular to the disc, causing a current to flow in the radial arm due to the Lorentz force. Mechanical work is necessary to drive this current. When the generated current flows through the conducting rim, a magnetic field is generated by this current through Ampère's circuital law (labelled "induced B" in the figure). The rim thus becomes an
electromagnet An electromagnet is a type of magnet in which the magnetic field is produced by an electric current. Electromagnets usually consist of wire wound into a coil. A current through the wire creates a magnetic field which is concentrated in the ...
that resists rotation of the disc (an example of
Lenz's law Lenz's law states that the direction of the electric current induced in a conductor by a changing magnetic field is such that the magnetic field created by the induced current opposes changes in the initial magnetic field. It is named after p ...
). On the far side of the figure, the return current flows from the rotating arm through the far side of the rim to the bottom brush. The B-field induced by this return current opposes the applied B-field, tending to ''decrease'' the flux through that side of the circuit, opposing the ''increase'' in flux due to rotation. On the near side of the figure, the return current flows from the rotating arm through the near side of the rim to the bottom brush. The induced B-field ''increases'' the flux on this side of the circuit, opposing the ''decrease'' in flux due to r the rotation. The energy required to keep the disc moving, despite this reactive force, is exactly equal to the electrical energy generated (plus energy wasted due to
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of t ...
,
Joule heating Joule heating, also known as resistive, resistance, or Ohmic heating, is the process by which the passage of an electric current through a conductor (material), conductor produces heat. Joule's first law (also just Joule's law), also known in c ...
, and other inefficiencies). This behavior is common to all generators converting
mechanical energy In Outline of physical science, physical sciences, mechanical energy is the sum of potential energy and kinetic energy. The principle of conservation of mechanical energy states that if an isolated system is subject only to conservative forces, t ...
to electrical energy.


Electrical transformer

When the electric current in a loop of wire changes, the changing current creates a changing magnetic field. A second wire in reach of this magnetic field will experience this change in magnetic field as a change in its coupled magnetic flux, \frac. Therefore, an electromotive force is set up in the second loop called the induced emf or transformer emf. If the two ends of this loop are connected through an electrical load, current will flow.


Current clamp

A current clamp is a type of transformer with a split core which can be spread apart and clipped onto a wire or coil to either measure the current in it or, in reverse, to induce a voltage. Unlike conventional instruments the clamp does not make electrical contact with the conductor or require it to be disconnected during attachment of the clamp.


Magnetic flow meter

Faraday's law is used for measuring the flow of electrically conductive liquids and slurries. Such instruments are called magnetic flow meters. The induced voltage ε generated in the magnetic field ''B'' due to a conductive liquid moving at velocity ''v'' is thus given by: :\mathcal= - B \ell v, where ℓ is the distance between electrodes in the magnetic flow meter.


Eddy currents

Electrical conductors moving through a steady magnetic field, or stationary conductors within a changing magnetic field, will have circular currents induced within them by induction, called
eddy current Eddy currents (also called Foucault's currents) are loops of electrical current induced within conductors by a changing magnetic field in the conductor according to Faraday's law of induction or by the relative motion of a conductor in a mag ...
s. Eddy currents flow in closed loops in planes perpendicular to the magnetic field. They have useful applications in
eddy current brake An eddy current brake, also known as an induction brake, electric brake or electric retarder, is a device used to slow or stop a moving object by generating eddy currents and thus dissipating its kinetic energy as heat. Unlike friction brakes, wh ...
s and induction heating systems. However eddy currents induced in the metal
magnetic core A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, in ...
s of transformers and AC motors and generators are undesirable since they dissipate energy (called
core losses A magnetic core is a piece of magnetic material with a high magnetic permeability used to confine and guide magnetic fields in electrical, electromechanical and magnetic devices such as electromagnets, transformers, electric motors, generators, in ...
) as heat in the resistance of the metal. Cores for these devices use a number of methods to reduce eddy currents: * Cores of low frequency alternating current electromagnets and transformers, instead of being solid metal, are often made of stacks of metal sheets, called ''laminations'', separated by nonconductive coatings. These thin plates reduce the undesirable parasitic eddy currents, as described below. * Inductors and transformers used at higher frequencies often have magnetic cores made of nonconductive magnetic materials such as ferrite or iron powder held together with a resin binder.


Electromagnet laminations

Eddy currents occur when a solid metallic mass is rotated in a magnetic field, because the outer portion of the metal cuts more magnetic lines of force than the inner portion; hence the induced electromotive force is not uniform; this tends to cause electric currents between the points of greatest and least potential. Eddy currents consume a considerable amount of energy and often cause a harmful rise in temperature.Images and reference text are from the public domain book: ''
Hawkins Electrical Guide The ''Hawkins Electrical Guide'' was a technical engineering book written by Nehemiah Hawkins, first published in 1914, intended to explain the highly complex principles of the new technology of electricity in a way that could be understood ...
'', Volume 1, Chapter 19: Theory of the Armature, pp. 270–273, Copyright 1917 by Theo. Audel & Co., Printed in the United States
Only five laminations or plates are shown in this example, so as to show the subdivision of the eddy currents. In practical use, the number of laminations or punchings ranges from 40 to 66 per inch (16 to 26 per centimetre), and brings the eddy current loss down to about one percent. While the plates can be separated by insulation, the voltage is so low that the natural rust/oxide coating of the plates is enough to prevent current flow across the laminations. This is a rotor approximately 20 mm in diameter from a DC motor used in a Note the laminations of the electromagnet pole pieces, used to limit parasitic inductive losses.


Parasitic induction within conductors

In this illustration, a solid copper bar conductor on a rotating armature is just passing under the tip of the pole piece N of the field magnet. Note the uneven distribution of the lines of force across the copper bar. The magnetic field is more concentrated and thus stronger on the left edge of the copper bar (a,b) while the field is weaker on the right edge (c,d). Since the two edges of the bar move with the same velocity, this difference in field strength across the bar creates whorls or current eddies within the copper bar. High current power-frequency devices, such as electric motors, generators and transformers, use multiple small conductors in parallel to break up the eddy flows that can form within large solid conductors. The same principle is applied to transformers used at higher than power frequency, for example, those used in switch-mode power supplies and the
intermediate frequency In communications and electronic engineering, an intermediate frequency (IF) is a frequency to which a carrier wave is shifted as an intermediate step in transmission or reception. The intermediate frequency is created by mixing the carrier sign ...
coupling transformers of radio receivers.


See also

*
Alternator An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature.Go ...
*
Crosstalk In electronics, crosstalk is any phenomenon by which a signal transmitted on one circuit or channel of a transmission system creates an undesired effect in another circuit or channel. Crosstalk is usually caused by undesired capacitive, induc ...
*
Faraday paradox The Faraday paradox or Faraday's paradox is any experiment in which Michael Faraday's law of electromagnetic induction appears to predict an incorrect result. The paradoxes fall into two classes: * Faraday's law appears to predict that there wi ...
*
Hall effect The Hall effect is the production of a voltage difference (the Hall voltage) across an electrical conductor that is transverse to an electric current in the conductor and to an applied magnetic field perpendicular to the current. It was disco ...
*
Inductance Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the ...
*
Moving magnet and conductor problem The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant vel ...


References


Notes


References


Further reading


Maxwell, James Clerk (1881), ''A treatise on electricity and magnetism, Vol. II'', Chapter III, §530, p. 178.
Oxford, UK: Clarendon Press. .


External links

*
Tankersley and Mosca: ''Introducing Faraday's law''


{{DEFAULTSORT:Electromagnetic Induction Electrodynamics Physical phenomena Michael Faraday Maxwell's equations