HOME

TheInfoList



OR:

In mathematics, if A is a
subset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset o ...
of B, then the inclusion map (also inclusion function, insertion, or canonical injection) is the function \iota that sends each element x of A to x, treated as an element of B: \iota : A\rightarrow B, \qquad \iota(x)=x. A "hooked arrow" () is sometimes used in place of the function arrow above to denote an inclusion map; thus: \iota: A\hookrightarrow B. (However, some authors use this hooked arrow for any embedding.) This and other analogous injective functions from substructures are sometimes called natural injections. Given any morphism f between objects X and Y, if there is an inclusion map into the domain \iota : A \to X, then one can form the
restriction Restriction, restrict or restrictor may refer to: Science and technology * restrict, a keyword in the C programming language used in pointer declarations * Restriction enzyme, a type of enzyme that cleaves genetic material Mathematics and log ...
f \, \iota of f. In many instances, one can also construct a canonical inclusion into the
codomain In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either ...
R \to Y known as the range of f.


Applications of inclusion maps

Inclusion maps tend to be
homomorphism In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "sa ...
s of
algebraic structure In mathematics, an algebraic structure consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set ...
s; thus, such inclusion maps are embeddings. More precisely, given a substructure closed under some operations, the inclusion map will be an embedding for tautological reasons. For example, for some binary operation \star, to require that \iota(x\star y) = \iota(x) \star \iota(y) is simply to say that \star is consistently computed in the sub-structure and the large structure. The case of a
unary operation In mathematics, an unary operation is an operation with only one operand, i.e. a single input. This is in contrast to binary operations, which use two operands. An example is any function , where is a set. The function is a unary operation ...
is similar; but one should also look at nullary operations, which pick out a ''constant'' element. Here the point is that closure means such constants must already be given in the substructure. Inclusion maps are seen in
algebraic topology Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classif ...
where if A is a
strong deformation retract In topology, a branch of mathematics, a retraction is a continuous mapping from a topological space into a subspace that preserves the position of all points in that subspace. The subspace is then called a retract of the original space. A deformat ...
of X, the inclusion map yields an isomorphism between all homotopy groups (that is, it is a
homotopy equivalence In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from grc, ὁμός "same, similar" and "place") if one can be "continuously deformed" into the other, such a defo ...
). Inclusion maps in
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
come in different kinds: for example embeddings of submanifolds. Contravariant objects (which is to say, objects that have pullbacks; these are called covariant in an older and unrelated terminology) such as
differential form In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many application ...
s ''restrict'' to submanifolds, giving a mapping in the ''other direction''. Another example, more sophisticated, is that of affine schemes, for which the inclusions \operatorname\left(R/I\right) \to \operatorname(R) and \operatorname\left(R/I^2\right) \to \operatorname(R) may be different morphisms, where R is a commutative ring and R is an ideal of R.


See also

* *


References

{{DEFAULTSORT:Inclusion Map Basic concepts in set theory Functions and mappings