Hypervelocity Impact
   HOME

TheInfoList



OR:

Hypervelocity is very high
velocity Velocity is the directional speed of an object in motion as an indication of its rate of change in position as observed from a particular frame of reference and as measured by a particular standard of time (e.g. northbound). Velocity is a ...
, approximately over 3,000
meters per second The metre (British spelling) or meter (American spelling; see spelling differences) (from the French unit , from the Greek noun , "measure"), symbol m, is the primary unit of length in the International System of Units (SI), though its prefi ...
(6,700 mph, 11,000 km/h, 10,000 ft/s, or Mach 8.8). In particular, hypervelocity is velocity so high that the strength of materials upon impact is very small compared to
inertia Inertia is the idea that an object will continue its current motion until some force causes its speed or direction to change. The term is properly understood as shorthand for "the principle of inertia" as described by Newton in his first law ...
l stresses. Thus,
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
s and
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
s behave alike under hypervelocity impact. Extreme hypervelocity results in
vaporization Vaporization (or vaporisation) of an element or compound is a phase transition from the liquid phase to vapor. There are two types of vaporization: evaporation and boiling. Evaporation is a surface phenomenon, whereas boiling is a bulk phenomen ...
of the impactor and target. For structural metals, hypervelocity is generally considered to be over 2,500 m/s (5,600 mph, 9,000 km/h, 8,200 ft/s, or Mach 7.3).
Meteorite A meteorite is a solid piece of debris from an object, such as a comet, asteroid, or meteoroid, that originates in outer space and survives its passage through the atmosphere to reach the surface of a planet or Natural satellite, moon. When the ...
craters are also examples of hypervelocity impacts.


Overview

The term "hypervelocity" refers to velocities in the range from a few kilometers per
second The second (symbol: s) is the unit of time in the International System of Units (SI), historically defined as of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds ...
to some tens of kilometers per second. This is especially relevant in the field of
space exploration Space exploration is the use of astronomy and space technology to explore outer space. While the exploration of space is carried out mainly by astronomers with telescopes, its physical exploration though is conducted both by robotic spacec ...
and military use of space, where hypervelocity impacts (e.g. by
space debris Space debris (also known as space junk, space pollution, space waste, space trash, or space garbage) are defunct human-made objects in space—principally in Earth orbit—which no longer serve a useful function. These include derelict spacecr ...
or an attacking
projectile A projectile is an object that is propelled by the application of an external force and then moves freely under the influence of gravity and air resistance. Although any objects in motion through space are projectiles, they are commonly found in ...
) can result in anything from minor component degradation to the complete destruction of a
spacecraft A spacecraft is a vehicle or machine designed to fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, p ...
or missile. The impactor, as well as the surface it hits, can undergo temporary
liquefaction In materials science, liquefaction is a process that generates a liquid from a solid or a gas or that generates a non-liquid phase which behaves in accordance with fluid dynamics. It occurs both naturally and artificially. As an example of the ...
. The impact process can generate
plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
discharges, which can interfere with spacecraft electronics. Hypervelocity usually occurs during
meteor shower A meteor shower is a celestial event in which a number of meteors are observed to radiate, or originate, from one point in the night sky. These meteors are caused by streams of cosmic debris called meteoroids entering Earth's atmosphere at extre ...
s and deep space reentries, as carried out during the Zond,
Apollo Apollo, grc, Ἀπόλλωνος, Apóllōnos, label=genitive , ; , grc-dor, Ἀπέλλων, Apéllōn, ; grc, Ἀπείλων, Apeílōn, label=Arcadocypriot Greek, ; grc-aeo, Ἄπλουν, Áploun, la, Apollō, la, Apollinis, label= ...
and Luna programme, Luna programs. Given the intrinsic unpredictability of the timing and trajectories of meteors, space capsules are prime data gathering opportunities for the study of thermal protection materials at hypervelocity (in this context, hypervelocity is defined as greater than escape velocity). Given the rarity of such observation opportunities since the 1970s, the Genesis (spacecraft), Genesis and Stardust (spacecraft), Stardust Sample Return Capsule (SRC) reentries as well as the recent Hayabusa SRC reentry have spawned observation campaigns, most notably at NASA's Ames Research Center. Hypervelocity collisions can be studied by examining the results of naturally occurring collisions (between micrometeoroid, micrometeorites and
spacecraft A spacecraft is a vehicle or machine designed to fly in outer space. A type of artificial satellite, spacecraft are used for a variety of purposes, including communications, Earth observation, meteorology, navigation, space colonization, p ...
, or between meteorites and planetary bodies), or they may be performed in laboratories. Currently, the primary tool for laboratory experiments is a light-gas gun, but some experiments have used linear motors to accelerate projectiles to hypervelocity. The properties of metals under hypervelocity have been integrated with weapons, such as explosively formed penetrator. The vaporization upon impact and liquefaction of surfaces allow metal projectiles formed under hypervelocity forces to penetrate vehicle armor better than conventional bullets. NASA studies the effects of simulated orbital debris at the White Sands Test Facility Remote Hypervelocity Test Laboratory (RHTL). Objects smaller than a softball cannot be detected on radar. This has prompted spacecraft designers to develop shields to protect spacecraft from unavoidable collisions. At RHTL, micrometeoroid and orbital debris (MMOD) impacts are simulated on spacecraft components and shields allowing designers to test threats posed by the growing orbital debris environment and evolve shield technology to stay one step ahead. At RHTL, four two-stage light-gas guns propel 0.05 mm to 22.2 mm diameter projectiles to velocities as fast as 8.5 km/s.


Hypervelocity reentry events


Other definitions of hypervelocity

According to the United States Army, ''hypervelocity'' can also refer to the muzzle velocity of a weapon system, with the exact definition dependent upon the weapon in question. When discussing small arms a muzzle velocity of 5,000 ft/s (1524 m/s) or greater is considered hypervelocity, while for tank cannons the muzzle velocity must meet or exceed 3,350 ft/s (1021.08 m/s) to be considered hypervelocity, and the threshold for artillery cannons is 3,500 ft/s (1066.8 m/s).


See also

*2009 satellite collision *Hypervelocity star *Kinetic energy penetrator *Terminal velocity *Hypersonic *Impact depth#Newton's approximation for the impact depth


References

{{Doomsday Physical quantities Velocity Spaceflight concepts Space hazards Materials science Collision