Helium
   HOME

TheInfoList



OR:

Helium (from el, ἥλιος, helios, lit=sun) is a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with the symbol He and atomic number 2. It is a colorless, odorless, tasteless, non-toxic, inert,
monatomic In physics and chemistry, "monatomic" is a combination of the words "mono" and "atomic", and means "single atom". It is usually applied to gases: a monatomic gas is a gas in which atoms are not bound to each other. Examples at standard conditions ...
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
and the first in the
noble gas The noble gases (historically also the inert gases; sometimes referred to as aerogens) make up a class of chemical elements with similar properties; under standard conditions, they are all odorless, colorless, monatomic gases with very low ch ...
group in the periodic table. Its boiling and melting point are the lowest among all the elements. It is the second lightest and second most abundant element in the observable
universe The universe is all of space and time and their contents, including planets, stars, galaxies, and all other forms of matter and energy. The Big Bang theory is the prevailing cosmological description of the development of the universe. ...
(
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
is the lightest and most abundant). It is present at about 24% of the total elemental mass, which is more than 12 times the mass of all the heavier elements combined. Its abundance is similar to this in both the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
and in
Jupiter Jupiter is the fifth planet from the Sun and the largest in the Solar System. It is a gas giant with a mass more than two and a half times that of all the other planets in the Solar System combined, but slightly less than one-thousandth t ...
, due to the very high nuclear binding energy (per
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
) of helium-4, with respect to the next three elements after helium. This helium-4 binding energy also accounts for why it is a product of both
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
and radioactive decay. The most common isotope of helium in the universe is helium-4, the vast majority of which was formed during the Big Bang. Large amounts of new helium are created by nuclear fusion of hydrogen in
stars A star is an astronomical object comprising a luminous spheroid of plasma held together by its gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye at night, but their immense distances from Earth ma ...
. Helium was first detected as an unknown, yellow spectral line signature in sunlight during a solar eclipse in 1868 by Georges Rayet, Captain C. T. Haig, Norman R. Pogson, and Lieutenant John Herschel, and was subsequently confirmed by French astronomer
Jules Janssen Pierre Jules César Janssen (22 February 1824 – 23 December 1907), usually known as Jules Janssen, was a French astronomer who, along with English scientist Joseph Norman Lockyer, is credited with discovering the gaseous nature of the solar ...
. Janssen is often jointly credited with detecting the element, along with Norman Lockyer. Janssen recorded the helium spectral line during the solar eclipse of 1868, while Lockyer observed it from Britain. Lockyer was the first to propose that the line was due to a new element, which he named. The formal discovery of the element was made in 1895 by chemists Sir William Ramsay, Per Teodor Cleve, and Nils Abraham Langlet, who found helium emanating from the uranium
ore Ore is natural rock or sediment that contains one or more valuable minerals, typically containing metals, that can be mined, treated and sold at a profit.Encyclopædia Britannica. "Ore". Encyclopædia Britannica Online. Retrieved 7 Apr ...
, '' cleveite'', which is now not regarded as a separate mineral species, but as a variety of uraninite. In 1903, large reserves of helium were found in
natural gas field A petroleum reservoir or oil and gas reservoir is a subsurface accumulation of hydrocarbons contained in porous or fractured rock formations. Such reservoirs form when kerogen (ancient plant matter) is created in surrounding rock by the presence ...
s in parts of the United States, by far the largest supplier of the gas today. Liquid helium is used in cryogenics (its largest single use, absorbing about a quarter of production), and in the
cooling Cooling is removal of heat, usually resulting in a lower temperature and/or phase change. Temperature lowering achieved by any other means may also be called cooling.ASHRAE Terminology, https://www.ashrae.org/technical-resources/free-resources/as ...
of superconducting magnets, with its main commercial application in
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
scanners. Helium's other industrial uses—as a pressurizing and purge gas, as a protective atmosphere for
arc welding Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a binding of the metals. It is a type of welding that uses a welding powe ...
, and in processes such as growing crystals to make
silicon wafer In electronics, a wafer (also called a slice or substrate) is a thin slice of semiconductor, such as a crystalline silicon (c-Si), used for the fabrication of integrated circuits and, in photovoltaics, to manufacture solar cells. The wafer serv ...
s—account for half of the gas produced. A well-known but minor use is as a lifting gas in balloons and airships. As with any gas whose density differs from that of air, inhaling a small volume of helium temporarily changes the timbre and quality of the human voice. In scientific research, the behavior of the two fluid phases of helium-4 (helium I and helium II) is important to researchers studying
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
(in particular the property of
superfluidity Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
) and to those looking at the phenomena, such as superconductivity, produced in
matter In classical physics and general chemistry, matter is any substance that has mass and takes up space by having volume. All everyday objects that can be touched are ultimately composed of atoms, which are made up of interacting subatomic part ...
near absolute zero. On Earth, it is relatively rare—5.2 ppm by volume in the atmosphere. Most terrestrial helium present today is created by the natural radioactive decay of heavy radioactive elements ( thorium and uranium, although there are other examples), as the alpha particles emitted by such decays consist of helium-4 nuclei. This radiogenic helium is trapped with
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbo ...
in concentrations as great as 7% by volume, from which it is extracted commercially by a low-temperature separation process called fractional distillation. Terrestrial helium is a non-renewable resource because once released into the atmosphere, it promptly escapes into space. Its supply is thought to be rapidly diminishing. However, some studies suggest that helium produced deep in the earth by radioactive decay can collect in natural gas reserves in larger than expected quantities, in some cases, having been released by volcanic activity.


History


Scientific discoveries

The first evidence of helium was observed on August 18, 1868, as a bright yellow line with a
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, t ...
of 587.49 nanometers in the
spectrum A spectrum (plural ''spectra'' or ''spectrums'') is a condition that is not limited to a specific set of values but can vary, without gaps, across a continuum. The word was first used scientifically in optics to describe the rainbow of colors ...
of the chromosphere of the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
. The line was detected by French astronomer
Jules Janssen Pierre Jules César Janssen (22 February 1824 – 23 December 1907), usually known as Jules Janssen, was a French astronomer who, along with English scientist Joseph Norman Lockyer, is credited with discovering the gaseous nature of the solar ...
during a total solar eclipse in Guntur, India. This line was initially assumed to be sodium. On October 20 of the same year, English astronomer, Norman Lockyer, observed a yellow line in the solar spectrum, which, he named the D3 because it was near the known D1 and D2 Fraunhofer line lines of sodium. He concluded that it was caused by an element in the Sun unknown on Earth. Lockyer and English chemist Edward Frankland named the element with the Greek word for the Sun, ἥλιος ('' helios''). In 1881, Italian physicist Luigi Palmieri detected helium on Earth for the first time through its D3 spectral line, when he analyzed a material that had been sublimated during a recent eruption of
Mount Vesuvius Mount Vesuvius ( ; it, Vesuvio ; nap, 'O Vesuvio , also or ; la, Vesuvius , also , or ) is a somma-stratovolcano located on the Gulf of Naples in Campania, Italy, about east of Naples and a short distance from the shore. It is one of ...
. On March 26, 1895, Scottish chemist Sir William Ramsay isolated helium on Earth by treating the mineral cleveite (a variety of uraninite with at least 10%
rare-earth elements The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silve ...
) with mineral acids. Ramsay was looking for
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as ...
but, after separating
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as ...
from the gas, liberated by sulfuric acid, he noticed a bright yellow line that matched the D3 line observed in the spectrum of the Sun. These samples were identified as helium by Lockyer and British physicist
William Crookes Sir William Crookes (; 17 June 1832 – 4 April 1919) was a British chemist and physicist who attended the Royal College of Chemistry, now part of Imperial College London, and worked on spectroscopy. He was a pioneer of vacuum tubes, inventing t ...
. It was independently isolated from cleveite, in the same year, by chemists, Per Teodor Cleve and Abraham Langlet, in Uppsala, Sweden, who collected enough of the gas to accurately determine its
atomic weight Relative atomic mass (symbol: ''A''; sometimes abbreviated RAM or r.a.m.), also known by the deprecated synonym atomic weight, is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a giv ...
. Helium was also isolated by the American geochemist, William Francis Hillebrand, prior to Ramsay's discovery, when he noticed unusual spectral lines while testing a sample of the mineral uraninite. Hillebrand, however, attributed the lines to nitrogen. His letter of congratulations to Ramsay offers an interesting case of discovery, and near-discovery, in science. In 1907,
Ernest Rutherford Ernest Rutherford, 1st Baron Rutherford of Nelson, (30 August 1871 – 19 October 1937) was a New Zealand physicist who came to be known as the father of nuclear physics. ''Encyclopædia Britannica'' considers him to be the greatest ...
and Thomas Royds demonstrated that alpha particles are helium nuclei, by allowing the particles to penetrate the thin, glass wall of an evacuated tube, then creating a discharge in the tube, to study the spectrum of the new gas inside. In 1908, helium was first liquefied by Dutch physicist Heike Kamerlingh Onnes by cooling the gas to less than . He tried to solidify it, by further reducing the temperature, but failed, because helium does not solidify at atmospheric pressure. Onnes' student
Willem Hendrik Keesom Willem Hendrik Keesom () (21 June 1876, Texel – 3 March 1956, Leiden) was a Dutch physicist who, in 1926, invented a method to freeze liquid helium. He also developed the first mathematical description of dipole–dipole interactions in 1 ...
was eventually able to solidify 1 cm3 of helium in 1926 by applying additional external pressure. In 1913,
Niels Bohr Niels Henrik David Bohr (; 7 October 1885 – 18 November 1962) was a Danish physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922 ...
published his "trilogy" on atomic structure that included a reconsideration of the Pickering–Fowler series as central evidence in support of his model of the atom. This series is named for
Edward Charles Pickering Edward Charles Pickering (July 19, 1846 – February 3, 1919) was an American astronomer and physicist and the older brother of William Henry Pickering. Along with Carl Vogel, Pickering discovered the first spectroscopic binary stars. He wrote ' ...
, who in 1896 published observations of previously unknown lines in the spectrum of the star ζ Puppis (these are now known to occur with Wolf–Rayet and other hot stars). Pickering attributed the observation (lines at 4551, 5411, and 10123  Å) to a new form of hydrogen with half-integer transition levels. In 1912, Alfred Fowler managed to produce similar lines from a hydrogen-helium mixture, and supported Pickering's conclusion as to their origin. Bohr's model does not allow for half-integer transitions (nor does quantum mechanics) and Bohr concluded that Pickering and Fowler were wrong, and instead assigned these spectral lines to ionised helium, He+. Fowler was initially skeptical but was ultimately convinced that Bohr was correct, and by 1915 "spectroscopists had transferred he Pickering–Fowler seriesdefinitively rom hydrogento helium." Bohr's theoretical work on the Pickering series had demonstrated the need for "a re-examination of problems that seemed already to have been solved within classical theories" and provided important confirmation for his atomic theory. In 1938, Russian physicist Pyotr Leonidovich Kapitsa discovered that helium-4 has almost no viscosity at temperatures near absolute zero, a phenomenon now called
superfluidity Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
. This phenomenon is related to Bose–Einstein condensation. In 1972, the same phenomenon was observed in helium-3, but at temperatures much closer to absolute zero, by American physicists Douglas D. Osheroff, David M. Lee, and Robert C. Richardson. The phenomenon in helium-3 is thought to be related to pairing of helium-3 fermions to make
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
s, in analogy to
Cooper pairs In condensed matter physics, a Cooper pair or BCS pair (Bardeen–Cooper–Schrieffer pair) is a pair of electrons (or other fermions) bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Coope ...
of electrons producing superconductivity.


Extraction and use

After an oil drilling operation in 1903 in Dexter, Kansas produced a gas geyser that would not burn, Kansas state geologist Erasmus Haworth collected samples of the escaping gas and took them back to the University of Kansas at Lawrence where, with the help of chemists Hamilton Cady and David McFarland, he discovered that the gas consisted of, by volume, 72% nitrogen, 15% methane (a
combustible A combustible material is something that can burn (i.e., ''combust'') in air. A combustible material is flammable if it ignites easily at ambient temperatures. In other words, a combustible material ignites with some effort and a flammable mat ...
percentage only with sufficient oxygen), 1%
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
, and 12% an unidentifiable gas. With further analysis, Cady and McFarland discovered that 1.84% of the gas sample was helium. This showed that despite its overall rarity on Earth, helium was concentrated in large quantities under the American Great Plains, available for extraction as a byproduct of
natural gas Natural gas (also called fossil gas or simply gas) is a naturally occurring mixture of gaseous hydrocarbons consisting primarily of methane in addition to various smaller amounts of other higher alkanes. Low levels of trace gases like carbo ...
. This enabled the United States to become the world's leading supplier of helium. Following a suggestion by Sir Richard Threlfall, the
United States Navy The United States Navy (USN) is the maritime service branch of the United States Armed Forces and one of the eight uniformed services of the United States. It is the largest and most powerful navy in the world, with the estimated tonnage ...
sponsored three small experimental helium plants during World War I. The goal was to supply barrage balloons with the non-flammable, lighter-than-air gas. A total of of 92% helium was produced in the program even though less than a cubic meter of the gas had previously been obtained. Some of this gas was used in the world's first helium-filled airship, the U.S. Navy's
C-class blimp The C-class blimp was a patrol airship developed by the US Navy shortly after World War I, a systematic improvement upon the B-type which was very suitable for training, but of limited value for patrol work. Larger than the B-class, these blimps ...
C-7, which flew its maiden voyage from Hampton Roads, Virginia, to Bolling Field in Washington, D.C., on December 1, 1921, nearly two years before the Navy's first ''rigid'' helium-filled airship, the Naval Aircraft Factory-built ''USS Shenandoah'', flew in September 1923. Although the extraction process using low-temperature gas liquefaction was not developed in time to be significant during World War I, production continued. Helium was primarily used as a lifting gas in lighter-than-air craft. During World War II, the demand increased for helium for lifting gas and for shielded arc welding. The
helium mass spectrometer A helium mass spectrometer is an instrument commonly used to detect and locate small leaks. It was initially developed in the Manhattan Project during World War II to find extremely small leaks in the gas diffusion process of uranium enrichment pl ...
was also vital in the atomic bomb Manhattan Project. The government of the United States set up the National Helium Reserve in 1925 at Amarillo, Texas, with the goal of supplying military airships in time of war and commercial airships in peacetime. Because of the
Helium Act of 1925 Helium Act of 1925, 50 USC § 161, is a United States statute drafted for the purpose of conservation, exploration, and procurement of helium gas. The Act of Congress authorized the condemnation, lease, or purchase of acquired lands bearing the p ...
, which banned the export of scarce helium on which the US then had a production monopoly, together with the prohibitive cost of the gas, the Hindenburg, like all German Zeppelins, was forced to use hydrogen as the lift gas. The helium market after World War II was depressed but the reserve was expanded in the 1950s to ensure a supply of
liquid helium Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temp ...
as a coolant to create oxygen/hydrogen
rocket fuel Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical ...
(among other uses) during the Space Race and Cold War. Helium use in the United States in 1965 was more than eight times the peak wartime consumption. After the "Helium Acts Amendments of 1960" (Public Law 86–777), the
U.S. Bureau of Mines For most of the 20th century, the United States Bureau of Mines (USBM) was the primary Federal government of the United States, United States government agency conducting scientific research and disseminating information on the extraction, proce ...
arranged for five private plants to recover helium from natural gas. For this ''helium conservation'' program, the Bureau built a pipeline from Bushton, Kansas, to connect those plants with the government's partially depleted Cliffside gas field near Amarillo, Texas. This helium-nitrogen mixture was injected and stored in the Cliffside gas field until needed, at which time it was further purified. By 1995, a billion cubic meters of the gas had been collected and the reserve was US$1.4 billion in debt, prompting the
Congress of the United States The United States Congress is the legislature of the federal government of the United States. It is bicameral, composed of a lower body, the House of Representatives, and an upper body, the Senate. It meets in the U.S. Capitol in Wash ...
in 1996 to phase out the reserve.Stwertka, Albert (1998). ''Guide to the Elements: Revised Edition''. New York; Oxford University Press, p. 24. The resulting Helium Privatization Act of 1996 (Public Law 104–273) directed the United States Department of the Interior to empty the reserve, with sales starting by 2005. Helium produced between 1930 and 1945 was about 98.3% pure (2% nitrogen), which was adequate for airships. In 1945, a small amount of 99.9% helium was produced for welding use. By 1949, commercial quantities of Grade A 99.95% helium were available. For many years, the United States produced more than 90% of commercially usable helium in the world, while extraction plants in Canada, Poland, Russia, and other nations produced the remainder. In the mid-1990s, a new plant in
Arzew Arzew or Arzeu ( ar, أرزيو Berber; ) is a port city in Algeria, 25 miles (40 km) from Oran. It is the capital of Arzew District, Oran Province. History Antiquity Like the rest of North Africa, the site of modern-day Arzew was ori ...
, Algeria, producing 17 million cubic meters (600 million cubic feet) began operation, with enough production to cover all of Europe's demand. Meanwhile, by 2000, the consumption of helium within the U.S. had risen to more than 15 million kg per year. In 2004–2006, additional plants in Ras Laffan,
Qatar Qatar (, ; ar, قطر, Qaṭar ; local vernacular pronunciation: ), officially the State of Qatar,) is a country in Western Asia. It occupies the Qatar Peninsula on the northeastern coast of the Arabian Peninsula in the Middle East; it ...
, and Skikda, Algeria were built. Algeria quickly became the second leading producer of helium. Through this time, both helium consumption and the costs of producing helium increased. From 2002 to 2007 helium prices doubled. , the United States National Helium Reserve accounted for 30 percent of the world's helium. The reserve was expected to run out of helium in 2018. Despite that, a proposed bill in the
United States Senate The United States Senate is the upper chamber of the United States Congress, with the House of Representatives being the lower chamber. Together they compose the national bicameral legislature of the United States. The composition and pow ...
would allow the reserve to continue to sell the gas. Other large reserves were in the Hugoton in Kansas, United States, and nearby gas fields of Kansas and the panhandles of
Texas Texas (, ; Spanish: ''Texas'', ''Tejas'') is a state in the South Central region of the United States. At 268,596 square miles (695,662 km2), and with more than 29.1 million residents in 2020, it is the second-largest U.S. state by ...
and Oklahoma. New helium plants were scheduled to open in 2012 in
Qatar Qatar (, ; ar, قطر, Qaṭar ; local vernacular pronunciation: ), officially the State of Qatar,) is a country in Western Asia. It occupies the Qatar Peninsula on the northeastern coast of the Arabian Peninsula in the Middle East; it ...
, Russia, and the US state of Wyoming, but they were not expected to ease the shortage. In 2013, Qatar started up the world's largest helium unit, although the
2017 Qatar diplomatic crisis The Qatar diplomatic crisis was a diplomatic incident in the Middle East that began on 5 June 2017 when Saudi Arabia, the United Arab Emirates, Bahrain and Egypt severed diplomatic relations with Qatar and banned Qatar-registered planes and ship ...
severely affected helium production there. 2014 was widely acknowledged to be a year of over-supply in the helium business, following years of renowned shortages. Nasdaq reported (2015) that for Air Products, an international corporation that sells gases for industrial use, helium volumes remain under economic pressure due to feedstock supply constraints.


Characteristics


Atom


In quantum mechanics

In the perspective of
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistr ...
, helium is the second simplest atom to model, following the hydrogen atom. Helium is composed of two electrons in
atomic orbital In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in an ...
s surrounding a nucleus containing two protons and (usually) two neutrons. As in Newtonian mechanics, no system that consists of more than two particles can be solved with an exact analytical mathematical approach (see 3-body problem) and helium is no exception. Thus, numerical mathematical methods are required, even to solve the system of one nucleus and two electrons. Such computational chemistry methods have been used to create a quantum mechanical picture of helium electron binding which is accurate to within < 2% of the correct value, in a few computational steps. Such models show that each electron in helium partly screens the nucleus from the other, so that the effective nuclear charge ''Z''eff which each electron sees is about 1.69 units, not the 2 charges of a classic "bare" helium nucleus.


Related stability of the helium-4 nucleus and electron shell

The nucleus of the helium-4 atom is identical with an alpha particle. High-energy electron-scattering experiments show its charge to decrease exponentially from a maximum at a central point, exactly as does the charge density of helium's own
electron cloud In atomic theory and quantum mechanics, an atomic orbital is a function describing the location and wave-like behavior of an electron in an atom. This function can be used to calculate the probability of finding any electron of an atom in any sp ...
. This symmetry reflects similar underlying physics: the pair of neutrons and the pair of protons in helium's nucleus obey the same quantum mechanical rules as do helium's pair of electrons (although the nuclear particles are subject to a different nuclear binding potential), so that all these fermions fully occupy 1s orbitals in pairs, none of them possessing orbital angular momentum, and each cancelling the other's intrinsic spin. Adding another of any of these particles would require angular momentum and would release substantially less energy (in fact, no nucleus with five nucleons is stable). This arrangement is thus energetically extremely stable for all these particles, and this stability accounts for many crucial facts regarding helium in nature. For example, the stability and low energy of the electron cloud state in helium accounts for the element's chemical inertness, and also the lack of interaction of helium atoms with each other, producing the lowest melting and boiling points of all the elements. In a similar way, the particular energetic stability of the helium-4 nucleus, produced by similar effects, accounts for the ease of helium-4 production in atomic reactions that involve either heavy-particle emission or fusion. Some stable helium-3 (two protons and one neutron) is produced in fusion reactions from hydrogen, but it is a very small fraction compared to the highly favorable helium-4. The unusual stability of the helium-4 nucleus is also important cosmologically: it explains the fact that in the first few minutes after the Big Bang, as the "soup" of free protons and neutrons which had initially been created in about 6:1 ratio cooled to the point that nuclear binding was possible, almost all first compound atomic nuclei to form were helium-4 nuclei. Owing to the relatively tight binding of helium-4 nuclei, its production consumed nearly all of the free neutrons in a few minutes, before they could beta-decay, and thus few neutrons were available to form heavier atoms such as lithium, beryllium, or boron. Helium-4 nuclear binding per nucleon is stronger than in any of these elements (see nucleogenesis and binding energy) and thus, once helium had been formed, no energetic drive was available to make elements 3, 4 and 5. It is barely energetically favorable for helium to fuse into the next element with a lower energy per
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
, carbon. However, due to lack of intermediate elements, this process requires three helium nuclei striking each other nearly simultaneously (see triple alpha process). There was thus no time for significant carbon to be formed in the few minutes after the Big Bang, before the early expanding universe cooled to the temperature and pressure point where helium fusion to carbon was no longer possible. This left the early universe with a very similar ratio of hydrogen/helium as is observed today (3 parts hydrogen to 1 part helium-4 by mass), with nearly all the neutrons in the universe trapped in helium-4. All heavier elements (including those necessary for rocky planets like the Earth, and for carbon-based or other life) have thus been created since the Big Bang in stars which were hot enough to fuse helium itself. All elements other than hydrogen and helium today account for only 2% of the mass of atomic matter in the universe. Helium-4, by contrast, makes up about 23% of the universe's ordinary matter—nearly all the ordinary matter that is not hydrogen.


Gas and plasma phases

Helium is the second least reactive noble gas after neon, and thus the second least reactive of all elements. It is chemically inert and monatomic in all standard conditions. Because of helium's relatively low molar (atomic) mass, its thermal conductivity, specific heat, and
sound speed The speed of sound is the distance travelled per unit of time by a sound wave as it propagates through an elastic medium. At , the speed of sound in air is about , or one kilometre in or one mile in . It depends strongly on temperature as wel ...
in the gas phase are all greater than any other gas except
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
. For these reasons and the small size of helium monatomic molecules, helium diffuses through solids at a rate three times that of air and around 65% that of hydrogen. Helium is the least water-
soluble In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution. The extent of the solubi ...
monatomic gas, and one of the least water-soluble of any gas ( CF4, SF6, and C4F8 have lower mole fraction solubilities: 0.3802, 0.4394, and 0.2372 x2/10−5, respectively, versus helium's 0.70797 x2/10−5), and helium's index of refraction is closer to unity than that of any other gas. Helium has a negative Joule–Thomson coefficient at normal ambient temperatures, meaning it heats up when allowed to freely expand. Only below its Joule–Thomson inversion temperature (of about 32 to 50 K at 1 atmosphere) does it cool upon free expansion. Once precooled below this temperature, helium can be liquefied through expansion cooling. Most extraterrestrial helium is found in a plasma state, with properties quite different from those of atomic helium. In a plasma, helium's electrons are not bound to its nucleus, resulting in very high electrical conductivity, even when the gas is only partially ionized. The charged particles are highly influenced by magnetic and electric fields. For example, in the
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
together with ionized hydrogen, the particles interact with the Earth's magnetosphere, giving rise to
Birkeland current A Birkeland current (also known as field-aligned current) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere. In the Earth's magnetosphere, the curr ...
s and the
aurora An aurora (plural: auroras or aurorae), also commonly known as the polar lights, is a natural light display in Earth's sky, predominantly seen in high-latitude regions (around the Arctic and Antarctic). Auroras display dynamic patterns of bri ...
.


Liquid phase

Unlike any other element, helium will remain liquid down to absolute zero at normal pressures. This is a direct effect of quantum mechanics: specifically, the zero point energy of the system is too high to allow freezing. Solid helium requires a temperature of 1–1.5 K (about −272 °C or −457 °F) at about 25 bar (2.5 MPa) of pressure. It is often hard to distinguish solid from liquid helium since the refractive index of the two phases are nearly the same. The solid has a sharp
melting point The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depen ...
and has a crystalline structure, but it is highly
compressible In thermodynamics and fluid mechanics, the compressibility (also known as the coefficient of compressibility or, if the temperature is held constant, the isothermal compressibility) is a measure of the instantaneous relative volume change of a f ...
; applying pressure in a laboratory can decrease its volume by more than 30%. With a bulk modulus of about 27 megapascal, MPa it is ~100 times more compressible than water. Solid helium has a density of at 1.15 K and 66 atm; the projected density at 0 K and 25 bar (2.5 MPa) is . At higher temperatures, helium will solidify with sufficient pressure. At room temperature, this requires about 114,000 atm.


Helium I

Below its boiling point of and above the lambda point of , the isotope helium-4 exists in a normal colorless liquid state, called ''helium I''. Like other cryogenic liquids, helium I boils when it is heated and contracts when its temperature is lowered. Below the lambda point, however, helium does not boil, and it expands as the temperature is lowered further. Helium I has a gas-like index of refraction of 1.026 which makes its surface so hard to see that floats of Expanded polystyrene, Styrofoam are often used to show where the surface is. This colorless liquid has a very low viscosity and a density of 0.145–0.125 g/mL (between about 0 and 4 K), which is only one-fourth the value expected from classical physics. Quantum mechanics is needed to explain this property and thus both states of liquid helium (helium I and helium II) are called ''quantum fluids'', meaning they display atomic properties on a macroscopic scale. This may be an effect of its boiling point being so close to absolute zero, preventing random molecular motion (thermal energy) from masking the atomic properties.


Helium II

Liquid helium below its lambda point (called ''helium II'') exhibits very unusual characteristics. Due to its high thermal conductivity, when it boils, it does not bubble but rather evaporates directly from its surface. Helium-3 also has a superfluid phase, but only at much lower temperatures; as a result, less is known about the properties of the isotope. Helium II is a superfluid, a quantum mechanical state (see: macroscopic quantum phenomena) of matter with strange properties. For example, when it flows through capillaries as thin as 10−7 to 10−8 m it has no measurable viscosity. However, when measurements were done between two moving discs, a viscosity comparable to that of gaseous helium was observed. Current theory explains this using the ''two-fluid model'' for helium II. In this model, liquid helium below the lambda point is viewed as containing a proportion of helium atoms in a ground state, which are superfluid and flow with exactly zero viscosity, and a proportion of helium atoms in an excited state, which behave more like an ordinary fluid. In the ''fountain effect'', a chamber is constructed which is connected to a reservoir of helium II by a sintering, sintered disc through which superfluid helium leaks easily but through which non-superfluid helium cannot pass. If the interior of the container is heated, the superfluid helium changes to non-superfluid helium. In order to maintain the equilibrium fraction of superfluid helium, superfluid helium leaks through and increases the pressure, causing liquid to fountain out of the container. The thermal conductivity of helium II is greater than that of any other known substance, a million times that of helium I and several hundred times that of copper. This is because heat conduction occurs by an exceptional quantum mechanism. Most materials that conduct heat well have a valence band of free electrons which serve to transfer the heat. Helium II has no such valence band but nevertheless conducts heat well. The heat transfer, flow of heat is governed by equations that are similar to the wave equation used to characterize sound propagation in air. When heat is introduced, it moves at 20 meters per second at 1.8 K through helium II as waves in a phenomenon known as ''second sound''. Helium II also exhibits a creeping effect. When a surface extends past the level of helium II, the helium II moves along the surface, against the force of gravity. Helium II will escape from a vessel that is not sealed by creeping along the sides until it reaches a warmer region where it evaporates. It moves in a 30 nanometre, nm-thick film regardless of surface material. This film is called a Rollin film and is named after the man who first characterized this trait, Bernard V. Rollin. As a result of this creeping behavior and helium II's ability to leak rapidly through tiny openings, it is very difficult to confine. Unless the container is carefully constructed, the helium II will creep along the surfaces and through valves until it reaches somewhere warmer, where it will evaporate. Waves propagating across a Rollin film are governed by the same equation as gravity waves in shallow water, but rather than gravity, the restoring force is the van der Waals force. These waves are known as ''third sound''.


Isotopes

There are nine known isotopes of helium, but only helium-3 and helium-4 are stable isotope, stable. In the Earth's atmosphere, one atom is for every million that are . Unlike most elements, helium's isotopic abundance varies greatly by origin, due to the different formation processes. The most common isotope, helium-4, is produced on Earth by alpha decay of heavier radioactive elements; the alpha particles that emerge are fully ionized helium-4 nuclei. Helium-4 is an unusually stable nucleus because its
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
s are arranged into Nuclear shell model, complete shells. It was also formed in enormous quantities during Big Bang nucleosynthesis. Helium-3 is present on Earth only in trace amounts. Most of it has been present since Earth's formation, though some falls to Earth trapped in cosmic dust. Trace amounts are also produced by the beta decay of tritium. Rocks from the Earth's crust have isotope ratios varying by as much as a factor of ten, and these ratios can be used to investigate the origin of rocks and the composition of the Earth's Mantle (geology), mantle. is much more abundant in stars as a product of nuclear fusion. Thus in the interstellar medium, the proportion of to is about 100 times higher than on Earth. Extraplanetary material, such as Moon, lunar and asteroid regolith, have trace amounts of helium-3 from being bombarded by
solar wind The solar wind is a stream of charged particles released from the upper atmosphere of the Sun, called the corona. This plasma mostly consists of electrons, protons and alpha particles with kinetic energy between . The composition of the sol ...
s. The Moon's surface contains helium-3 at concentrations on the order of 10 Parts per billion, ppb, much higher than the approximately 5 Parts per trillion, ppt found in the Earth's atmosphere. A number of people, starting with Gerald Kulcinski in 1986, have proposed to explore the moon, mine lunar regolith, and use the helium-3 for Nuclear fusion, fusion. Liquid helium-4 can be cooled to about using evaporative cooling in a 1-K pot. Similar cooling of helium-3, which has a lower boiling point, can achieve about in a helium-3 refrigerator. Equal mixtures of liquid and below separate into two immiscible phases due to their dissimilarity (they follow different quantum statistics: helium-4 atoms are
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer spi ...
s while helium-3 atoms are fermions). Dilution refrigerators use this immiscibility to achieve temperatures of a few millikelvins. It is possible to produce exotic helium isotopes, which rapidly decay into other substances. The shortest-lived heavy helium isotope is the nuclear drip line, unbound helium-10 with a half-life of . Helium-6 decays by emitting a beta particle and has a half-life of 0.8 second. Helium-7 also emits a beta particle as well as a gamma ray. Helium-7 and helium-8 are created in certain nuclear reactions. Helium-6 and helium-8 are known to exhibit a nuclear halo.


Properties

Table of thermal and physical properties of helium gas at atmospheric pressure:


Compounds

Helium has a Valence (chemistry), valence of zero and is chemically unreactive under all normal conditions. It is an electrical insulator unless ionized. As with the other noble gases, helium has metastable energy levels that allow it to remain ionized in an electrical discharge with a voltage below its ionization potential. Helium can form unstable compound (chemistry), compounds, known as excimers, with tungsten, iodine, fluorine, sulfur, and phosphorus when it is subjected to a glow discharge, to electron bombardment, or reduced to Plasma physics, plasma by other means. The molecular compounds HeNe, HgHe10, and WHe2, and the molecular ions , , , and have been created this way. HeH+ is also stable in its ground state, but is extremely reactive—it is the strongest Brønsted–Lowry acid–base theory, Brønsted acid known, and therefore can exist only in isolation, as it will protonate any molecule or counteranion it contacts. This technique has also produced the neutral molecule He2, which has a large number of spectral band, band systems, and HgHe, which is apparently held together only by polarization forces. Van der Waals compounds of helium can also be formed with cryogenic helium gas and atoms of some other substance, such as LiHe and dihelium, He2. Theoretically, other true compounds may be possible, such as helium fluorohydride (HHeF) which would be analogous to Argon fluorohydride, HArF, discovered in 2000. Calculations show that two new compounds containing a helium-oxygen bond could be stable. Two new molecular species, predicted using theory, CsFHeO and N(CH3)4FHeO, are derivatives of a metastable FHeO anion first theorized in 2005 by a group from Taiwan. If confirmed by experiment, the only remaining element with no known stable compounds would be neon. Helium atoms have been inserted into the hollow carbon cage molecules (the fullerenes) by heating under high pressure. The endohedral fullerene, endohedral fullerene molecules formed are stable at high temperatures. When chemical derivatives of these fullerenes are formed, the helium stays inside. If helium-3 is used, it can be readily observed by helium nuclear magnetic resonance spectroscopy. Many fullerenes containing helium-3 have been reported. Although the helium atoms are not attached by covalent or ionic bonds, these substances have distinct properties and a definite composition, like all stoichiometric chemical compounds. Under high pressures helium can form compounds with various other elements. Helium-nitrogen clathrate (He(N2)11) crystals have been grown at room temperature at pressures ca. 10 GPa in a diamond anvil cell. The Insulator (electricity), insulating electride Disodium helide, Na2He has been shown to be thermodynamically stable at pressures above 113 GPa. It has a fluorite structure.


Occurrence and production


Natural abundance

Although it is rare on Earth, helium is the second most abundant element in the known Universe, constituting 23% of its baryonic mass. Only
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic ...
is more abundant. The vast majority of helium was formed by Big Bang nucleosynthesis one to three minutes after the Big Bang. As such, measurements of its abundance contribute to cosmological models. In stars, it is formed by the
nuclear fusion Nuclear fusion is a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles ( neutrons or protons). The difference in mass between the reactants and products is manife ...
of hydrogen in proton–proton chain, proton–proton chain reactions and the CNO cycle, part of stellar nucleosynthesis.; In the Earth's atmosphere, the concentration of helium by volume is only 5.2 parts per million. The concentration is low and fairly constant despite the continuous production of new helium because most helium in the Earth's atmosphere atmospheric escape, escapes into space by several processes. In the Earth's heterosphere, a part of the upper atmosphere, helium and other lighter gases are the most abundant elements. Most helium on Earth is a result of radioactive decay. Helium is found in large amounts in minerals of uranium and thorium, including uraninite and its varieties cleveite and pitchblende, carnotite and monazite (a group name; "monazite" usually refers to monazite-(Ce)), because they emit alpha particles (helium nuclei, He2+) to which electrons immediately combine as soon as the particle is stopped by the rock. In this way an estimated 3000 metric tons of helium are generated per year throughout the lithosphere. In the Earth's crust, the concentration of helium is 8 parts per billion. In seawater, the concentration is only 4 parts per trillion. There are also small amounts in mineral spring (hydrosphere), springs, volcanic gas, and meteoric iron. Because helium is trapped in the subsurface under conditions that also trap natural gas, the greatest natural concentrations of helium on the planet are found in natural gas, from which most commercial helium is extracted. The concentration varies in a broad range from a few ppm to more than 7% in a small gas field in San Juan County, New Mexico. the world's helium reserves were estimated at 31 billion cubic meters, with a third of that being in
Qatar Qatar (, ; ar, قطر, Qaṭar ; local vernacular pronunciation: ), officially the State of Qatar,) is a country in Western Asia. It occupies the Qatar Peninsula on the northeastern coast of the Arabian Peninsula in the Middle East; it ...
. In 2015 and 2016 additional probable reserves were announced to be under the Rocky Mountains in North America and in the East African Rift.


Modern extraction and distribution

For large-scale use, helium is extracted by fractional distillation from natural gas, which can contain as much as 7% helium. Since helium has a lower boiling point than any other element, low temperature and high pressure are used to liquefy nearly all the other gases (mostly
nitrogen Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at se ...
and methane). The resulting crude helium gas is purified by successive exposures to lowering temperatures, in which almost all of the remaining nitrogen and other gases are precipitated out of the gaseous mixture. Activated charcoal is used as a final purification step, usually resulting in 99.995% pure Grade-A helium. The principal impurity in Grade-A helium is neon. In a final production step, most of the helium that is produced is liquefied via a cryogenic process. This is necessary for applications requiring liquid helium and also allows helium suppliers to reduce the cost of long-distance transportation, as the largest liquid helium containers have more than five times the capacity of the largest gaseous helium tube trailers. In 2008, approximately 169 million standard cubic meters (SCM) of helium were extracted from natural gas or withdrawn from helium reserves with approximately 78% from the United States, 10% from Algeria, and most of the remainder from Russia, Poland and Qatar. By 2013, increases in helium production in Qatar (under the company Qatargas managed by Air Liquide) had increased Qatar's fraction of world helium production to 25%, and made it the second largest exporter after the United States. An estimated deposit of helium was found in Tanzania in 2016. A large-scale helium plant was opened in Ningxia, China in 2020. In the United States, most helium is extracted from natural gas of the Hugoton and nearby gas fields in Kansas, Oklahoma, and the Panhandle Field in Texas. Much of this gas was once sent by pipeline to the National Helium Reserve, but since 2005 this reserve is being depleted and sold off, and is expected to be largely depleted by 2021, under the October 2013 ''Responsible Helium Administration and Stewardship Act'' (H.R. 527). Diffusion of crude natural gas through special semipermeable membranes and other barriers is another method to recover and purify helium. In 1996, the U.S. had ''proven'' helium reserves, in such gas well complexes, of about 147 billion standard cubic feet (4.2 billion SCM). At rates of use at that time (72 million SCM per year in the U.S.; see pie chart below) this would have been enough helium for about 58 years of U.S. use, and less than this (perhaps 80% of the time) at world use rates, although factors in saving and processing impact effective reserve numbers. Helium must be extracted from natural gas because it is present in air at only a fraction of that of neon, yet the demand for it is far higher. It is estimated that if all neon production were retooled to save helium, 0.1% of the world's helium demands would be satisfied. Similarly, only 1% of the world's helium demands could be satisfied by re-tooling all air distillation plants. Helium can be synthesized by bombardment of lithium or boron with high-velocity protons, or by bombardment of lithium with deuterons, but these processes are a completely uneconomical method of production. Helium is commercially available in either liquid or gaseous form. As a liquid, it can be supplied in small insulated containers called Dewar flask, dewars which hold as much as 1,000 liters of helium, or in large ISO containers which have nominal capacities as large as 42 m3 (around 11,000 U.S. gallons). In gaseous form, small quantities of helium are supplied in high-pressure cylinders holding as much as 8 m3 (approx. 282 standard cubic feet), while large quantities of high-pressure gas are supplied in tube trailers which have capacities of as much as 4,860 m3 (approx. 172,000 standard cubic feet).


Conservation advocates

According to helium conservationists like Nobel laureate physicist Robert Coleman Richardson, writing in 2010, the free market price of helium has contributed to "wasteful" usage (e.g. for Tethered helium balloon, helium balloons). Prices in the 2000s had been lowered by the decision of the U.S. Congress to sell off the country's large helium stockpile by 2015. According to Richardson, the price needed to be multiplied by 20 to eliminate the excessive wasting of helium. In the paper ''Stop squandering helium'' published in 2012, it was also proposed to create an International Helium Agency that would build a sustainable market for "this precious commodity".


Applications

While balloons are perhaps the best known use of helium, they are a minor part of all helium use. Helium is used for many purposes that require some of its unique properties, such as its low boiling point, low density, low solubility, high thermal conductivity, or Chemically inert, inertness. Of the 2014 world helium total production of about 32 million kg (180 million standard cubic meters) helium per year, the largest use (about 32% of the total in 2014) is in cryogenic applications, most of which involves cooling the superconducting magnets in medical
MRI Magnetic resonance imaging (MRI) is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves ...
scanners and NMR spectrometers. Other major uses were pressurizing and purging systems, welding, maintenance of controlled atmospheres, and leak detection. Other uses by category were relatively minor fractions.


Controlled atmospheres

Helium is used as a protective gas in growing silicon and germanium crystals, in titanium and zirconium production, and in gas chromatography, because it is inert. Because of its inertness, ideal gas, thermally and calorically perfect nature, high speed of sound, and high value of the heat capacity ratio, it is also useful in supersonic wind tunnels and impulse facility, impulse facilities.


Gas tungsten arc welding

Helium is used as a shielding gas in
arc welding Arc welding is a welding process that is used to join metal to metal by using electricity to create enough heat to melt metal, and the melted metals, when cool, result in a binding of the metals. It is a type of welding that uses a welding powe ...
processes on materials that at welding temperatures are contaminated and weakened by air or nitrogen. A number of inert shielding gases are used in gas tungsten arc welding, but helium is used instead of cheaper
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as ...
especially for welding materials that have higher heat conductivity, like aluminium or copper.


Minor uses


Industrial leak detection

One industrial application for helium is leak detection. Because helium diffuses through solids three times faster than air, it is used as a tracer gas to detect leaks in high-vacuum equipment (such as cryogenic tanks) and high-pressure containers. The tested object is placed in a chamber, which is then evacuated and filled with helium. The helium that escapes through the leaks is detected by a sensitive device (
helium mass spectrometer A helium mass spectrometer is an instrument commonly used to detect and locate small leaks. It was initially developed in the Manhattan Project during World War II to find extremely small leaks in the gas diffusion process of uranium enrichment pl ...
), even at the leak rates as small as 10−9 mbar·L/s (10−10 Pa·m3/s). The measurement procedure is normally automatic and is called helium integral test. A simpler procedure is to fill the tested object with helium and to manually search for leaks with a hand-held device. Helium leaks through cracks should not be confused with gas permeation through a bulk material. While helium has documented permeation constants (thus a calculable permeation rate) through glasses, ceramics, and synthetic materials, inert gases such as helium will not permeate most bulk metals.


Flight

Because it is lighter than air, airships and balloons are inflated with helium for Lifting gas, lift. While hydrogen gas is more buoyant, and escapes permeating through a membrane at a lower rate, helium has the advantage of being non-flammable, and indeed fire-retardant. Another minor use is in rocketry, where helium is used as an ullage medium to displace fuel and oxidizers in storage tanks and to condense hydrogen and oxygen to make
rocket fuel Rocket propellant is the reaction mass of a rocket. This reaction mass is ejected at the highest achievable velocity from a rocket engine to produce thrust. The energy required can either come from the propellants themselves, as with a chemical ...
. It is also used to purge fuel and oxidizer from ground support equipment prior to launch and to pre-cool liquid hydrogen in space vehicles. For example, the Saturn V rocket used in the Apollo program needed about 370,000 m3 (13 million cubic feet) of helium to launch.


Minor commercial and recreational uses

Helium as a breathing gas has no Nitrogen narcosis, narcotic properties, so helium mixtures such as Trimix (breathing gas), trimix, heliox and Trimix (breathing gas)#Heliair, heliair are used for deep diving to reduce the effects of narcosis, which worsen with increasing depth. As pressure increases with depth, the density of the breathing gas also increases, and the low molecular weight of helium is found to considerably reduce the effort of breathing by lowering the density of the mixture. This reduces the Reynolds number of flow, leading to a reduction of turbulent flow and an increase in laminar flow, which requires less work of breathing. At depths below divers breathing helium–oxygen mixtures begin to experience tremors and a decrease in psychomotor function, symptoms of high-pressure nervous syndrome. This effect may be countered to some extent by adding an amount of narcotic gas such as hydrogen or nitrogen to a helium–oxygen mixture. Helium–neon lasers, a type of low-powered gas laser producing a red beam, had various practical applications which included barcode readers and laser pointers, before they were almost universally replaced by cheaper diode lasers. For its inertness and high thermal conductivity, neutron transparency, and because it does not form radioactive isotopes under reactor conditions, helium is used as a heat-transfer medium in some gas-cooled nuclear reactors. Helium, mixed with a heavier gas such as xenon, is useful for thermoacoustic refrigeration due to the resulting high heat capacity ratio and low Prandtl number. The inertness of helium has environmental advantages over conventional refrigeration systems which contribute to ozone depletion or global warming. Helium is also used in some hard disk drives.


Scientific uses

The use of helium reduces the distorting effects of temperature variations in the space between lens (optics), lenses in some telescopes, due to its extremely low index of refraction. This method is especially used in solar telescopes where a vacuum tight telescope tube would be too heavy. Helium is a commonly used carrier gas for gas chromatography. The age of rocks and minerals that contain uranium and thorium can be estimated by measuring the level of helium with a process known as helium dating. Helium at low temperatures is used in cryogenics, and in certain cryogenics applications. As examples of applications, liquid helium is used to cool certain metals to the extremely low temperatures required for superconductivity, such as in superconducting magnets for magnetic resonance imaging. The Large Hadron Collider at CERN uses 96 metric tons of liquid helium to maintain the temperature at .


Medical uses

Helium was approved for medical use in the United States in April 2020 for humans and animals.


As a contaminant

While chemically inert, helium contamination impairs the operation of microelectromechanical systems (MEMS) such that iPhones may fail.


Inhalation and safety


Effects

Neutral helium at standard conditions is non-toxic, plays no biological role and is found in trace amounts in human blood. The speed of sound in helium is nearly three times the speed of sound in air. Because the fundamental frequency, natural resonance frequency of a gas-filled cavity is proportional to the speed of sound in the gas, when helium is inhaled, a corresponding increase occurs in the resonant frequency, resonant frequencies of the vocal tract, which is the amplifier of vocal sound. This increase in the resonant frequency of the amplifier (the vocal tract) gives an increased amplification to the high-frequency components of the sound wave produced by the direct vibration of the vocal folds, compared to the case when the voice box is filled with air. When a person speaks after inhaling helium gas, the muscles that control the voice box still move in the same way as when the voice box is filled with air, therefore the fundamental frequency (sometimes called Pitch (music), pitch) produced by direct vibration of the vocal folds does not change. However, the high-frequency-preferred amplification causes a change in timbre of the amplified sound, resulting in a reedy, duck-like vocal quality. The opposite effect, lowering resonant frequencies, can be obtained by inhaling a dense gas such as sulfur hexafluoride or xenon.


Hazards

Inhaling helium can be dangerous if done to excess, since helium is a simple asphyxiant gas, asphyxiant and so displaces oxygen needed for normal respiration. Fatalities have been recorded, including a youth who suffocated in Vancouver in 2003 and two adults who suffocated in South Florida in 2006. In 1998, an Australian girl from Victoria fell unconscious and temporarily cyanosis, turned blue after inhaling the entire contents of a party balloon. Inhaling helium directly from pressurized cylinders or even balloon filling valves is extremely dangerous, as high flow rate and pressure can result in barotrauma, fatally rupturing lung tissue. Death caused by helium is rare. The first media-recorded case was that of a 15-year-old girl from Texas who died in 1998 from helium inhalation at a friend's party; the exact type of helium death is unidentified. In the United States only two fatalities were reported between 2000 and 2004, including a man who died in North Carolina of barotrauma in 2002. A youth asphyxiated in Vancouver during 2003, and a 27-year-old man in Australia had an embolism after breathing from a cylinder in 2000. Since then two adults asphyxiated in South Florida in 2006, and there were cases in 2009 and 2010, one a Californian youth who was found with a bag over his head, attached to a helium tank, and another teenager in Northern Ireland died of asphyxiation. At Eagle Point, Oregon a teenage girl died in 2012 from barotrauma at a party. A girl from Michigan died from hypoxia later in the year. On February 4, 2015, it was revealed that, during the recording of their main TV show on January 28, a 12-year-old member (name withheld) of Japanese all-girl singing group 3B Junior suffered from air embolism, losing consciousness and falling into a coma as a result of air bubbles blocking the flow of blood to the brain, after inhaling huge quantities of helium as part of a game. The incident was not made public until a week later. The staff of TV Asahi held an emergency press conference to communicate that the member had been taken to the hospital and is showing signs of rehabilitation such as moving eyes and limbs, but her consciousness has not yet been sufficiently recovered. Police have launched an investigation due to a neglect of safety measures. The safety issues for cryogenic helium are similar to those of liquid nitrogen; its extremely low temperatures can result in frostbite, cold burns, and the liquid-to-gas expansion ratio can cause explosions if no pressure-relief devices are installed. Containers of helium gas at 5 to 10 K should be handled as if they contain liquid helium due to the rapid and significant thermal expansion that occurs when helium gas at less than 10 K is warmed to room temperature. At high pressures (more than about 20 atm or two MPa), a mixture of helium and oxygen (heliox) can lead to high-pressure nervous syndrome, a sort of reverse-anesthetic effect; adding a small amount of nitrogen to the mixture can alleviate the problem.


See also

* Abiogenic petroleum origin * Helium-3 propulsion * Leidenfrost effect * Superfluid * Tracer-gas leak testing method * Hamilton Cady


Notes


References


Bibliography

* * * *


External links

General
U.S. Government's Bureau of Land Management: Sources, Refinement, and Shortage.
With some history of helium.
U.S. Geological Survey publications on helium
beginning 1996
Helium

Where is all the helium?
Aga website


Chemistry in its element podcast
(MP3) from the Royal Society of Chemistry's Chemistry World
Helium


includes health and safety information regarding accidental exposures to helium More detail

at ''The Periodic Table of Videos'' (University of Nottingham)
Helium
at the Helsinki University of Technology; includes pressure-temperature phase diagrams for helium-3 and helium-4
Lancaster University, Ultra Low Temperature Physics
nbsp;– includes a summary of some low temperature techniques *Video

(Alfred Leitner, 1963, 38 min.) Miscellaneous

with audio samples that demonstrate the unchanged voice pitch

Helium shortage
America's Helium Supply: Options for Producing More Helium from Federal Land: Oversight Hearing before the Subcommittee on Energy and Mineral Resources of the Committee on Natural Resources, U.S. House Of Representatives, One Hundred Thirteenth Congress, First Session, Thursday, July 11, 2013

Helium Program: Urgent Issues Facing BLM's Storage and Sale of Helium Reserves: Testimony before the Committee on Natural Resources, House of Representatives
Government Accountability Office * * {{Featured article Helium, Chemical elements Noble gases Quantum phases Airship technology Coolants Nuclear reactor coolants Diving equipment E-number additives Helios